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The Role of Molecular Structure in the Direct Determination of Phase

By HERBERT HAUPTMAN
U.S. Naval Research Laboratory, Washington, D.C., U.S.A.

(Received 11 June 1963 and in revised form 16 December 1963)

A major revision of the direct methods of phase determination is undertaken in order to extend
the domain of validity of the methods to those structures having atoms with rationally dependent
coordinates. The new formulation, strongly dependent on a critical analysis of the nature of the
interactions which may occur among Patterson peaks, has the additional advantage that it is
capable of using partial or complete a prior: information concerning molecular structure.

1. Introduction

The method of solving crystal structures based on
the direct determination of the phases of the structure
factors had its serious beginnings only about a dozen
years ago. Yet its development has been so vigorous
that it has already achieved several notable successes
(e.g. Christ & Clark, 1956; Karle, Hauptman, Karle
& Wing, 1958; Hauptman, Karle & Karle, 1960).
The most remarkable aspect of these applications of
the direct method, however, does not appear to have
been sufficiently stressed. This is simply that, in
contrast to most other methods of crystal structure
determination, no a priort knowledge of molecular
structure is employed by the direct methods. The fact
that the direct approach is not dependent on a
previous knowledge of molecular structure is of course
an advantage of the method when such previous
knowledge is not available. However, in the case
that such knowledge does exist, it is to be considered
a weakness of the direct method that it is unable
to utilize this information. In view of the fact that
complete, or even partial, knowledge of the molecular
structure would reduce substantially the number of
unknown parameters required to fix the crystal
structure, it is surely to be expected that the ability
to make use of such a priori structural information
would enhance the power of the method.

The direct method has been limited too by the fact
that, for their exact wvalidity, most of the phase
determining formulas require that a special type
of rational dependence among atomic coordinates be
not present. Owing to the symmetries which seem to
occur all too frequently in real crystals, this limitation
has proved to be much more serious than originally
expected, particularly in the non-centrosymmetric
space groups. Although it has been found possible
to surmount this difficulty for some of the special
relationships by means of the so-called renormaliza-
tion of structure factors (Hauptman & Karle, 1959c¢),
it has become increasingly clear that what is called
for is nothing less than a major revision of the whole
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formalism of the direct methods. It is the purpose
of this paper to carry out such a revision.

Instead of avoiding the annoying question of
rational dependence of atomic coordinates, it is
assumed from the outset that the kind of rational
dependence which causes trouble may in fact be
present. By a critical re-examination of the earlier
methods, coupled with a careful study of the nature
of the interactions which may exist among Patterson
peaks, it is shown how the formalism is to be modified
in order to accommodate the existing rational depen-
dence, if any. This more general point of view has
the additional advantage that it makes transparent
the manner in which previous knowledge of molecular
structure is to be used. Even if only partial information
concerning the molecular structure is available, the
new formalism is capable of utilizing it. Naturally,
however, the more complete the a prior:t knowledge
of the molecular structure the more accurate the
final phase determination will be.

A device often employed in this paper is to compute
expected values of different random variables and
to equate two expected values if the corresponding
probability distributions are approximately the same.
This technique naturally introduces certain errors into
the calculations the magnitudes of which it would
be desirable to estimate. However, a detailed study
of the errors involved in the final formulas must be
postponed in order to keep the present treatment
within reasonable bounds. Since the present formula-
tion includes as special cases those in which no rational
dependence exists and no previous knowledge of
molecular structure is available, it is possible to
specialize some of our formulas suitably so that
comparison with existing theory may be made.
There are four points at which such contacts with
earlier, known results are here made. In every case
the agreement with the exact formulas is acceptable,
the errors being of the order of 1//N or less, where
N is the number of atoms in the unit cell.

In this paper the final formulas express the mag-
nitudes of certain linear combinations of the phases,
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the so-called structure invariants, in terms of the
observed magnitudes of the structure factors. There
remains the problem of evaluating the individual
phases from the structure invariants. How this is
to be done for the centrosymmetric space groups has
already been spelled out in detail in an earlier series
of papers (Karle & Hauptman, 1959, b, 1960, 1961;
Hauptman & Karle, 1959a, b, 1960). These procedures
have been worked out also for certain of the non-
centrosymmetric space groups (Karle & Hauptman,
1956, 1957). However, complete details for all the
non-centrosymmetric space groups will be published
at a later date.

In §2 we give a formula for the average value of
exp {2 (h.r+h’.r')}. This result is of fundamental
importance for this paper. However, owing to the
length of the analysis, the proof is omitted.*

2. The average value of exp {2zi(h.r+h'.7")}

Debye (1915) obtained the average value of exp(2nzh.r)
where h is a fixed vector, the magnitude of the vector
r is fixed, and all orientations of r are equally prob-
able. He found that

in 2
{exp (2nth.1)) = s St

2:1
Smgr (21)

where ¢=|h| is the magnitude of h and »=|r| is the
magnitude of r. This result proved to be of basic
importance for the interpretation of the scattering
of electrons by gas molecules. We note that in Debye’s
application of (2-1) the vector r is identified with
an interatomic vector rj- which is assumed to be
randomly oriented.

For our purposes it turns out to be necessary to
average, not over all orientations of an interatomic
vector Ty, but instead over all orientations of an
interatomic triangle r,,, r,,, r,, where r,, is the vector
joining atom u to atom v, etc. However, except for
its position and orientation in space, such a triangle
is determined by the magnitudes of any two of its
sides and the angle between them. In this way we
are led to consider a generalization of (2-1). Assume
that the vectors h and h’ are given. The magnitudes
r and 7’ of the vectors r and r’ respectively, as well
as the angle @r between r and r’, are also specified.
We imagine that all orientations of the triangle
determined by r, 7', and @, are equally probable and
we seek, under these conditions, the average value of
exp {2zt (h.r+h'.r")}. The final result is a function,
which we shall denote by B(z, t), of two parameters
z and ¢ each of which is in turn expressible in terms
of the six known quantities ¢, ¢, ¢4, 7, 7', @r, Where
g and ¢’ are the magnitudes of h and h’ respectively,
@q is the angle between h and h’, and 7, +, and ¢,

* This analysis will appear in a forthcoming issue of
Z. Kristallogr. (1965).

have already been defined. With this notation we
have

THEOREM 2-1.
{exp {2ni(h.r+h'.r')}}=B(z, ¢)
T 2 fn
- ‘/QE "%0 (nl)2 Jyanin@) > (22)
where
Z=276V(q27‘2+2q7‘q’r' COS g COS <Pr+q'2r’2) , (23)
7tqrq’r’ sin @q sin

= 24
t 1/ (g2r2+2grq’r’ cos @q cos pr+¢'2r'2) (24)

and J,,,1)(2) is the Bessel function of the first kind.

We note first that the same result is obtained
if r and r’ are replaced by —r and —r’ respectively.
Hence also

{cos 2a(h.r+h'.r')>=B(z1). (2-5)

Next we observe that in the special case that

gq=0 or 7 or that ¢, =0 or &, then {=0, and, in view of

Jy(2)=/(2/(m2)) sin z,, (2-6)

equation (2:2) reduces to (sinz)/z, i.e. to Debye’s
result (2-1), as it should.

We remark finally that, since the pairs (h, h')
and (r,r’) occur symmetrically in Theorem 2-1,
we may interchange their roles. Hence Theorem 2:1
is valid also in the case that the vectors r and r’
are fixed and the average is taken over all orientations
in reciprocal space of the triangle with sides g, ¢’
and with included angle ¢o. We shall make important
use of this observation in the sequel.

From (2-3) and (2-4) it follows easily that

2(z+4t) =0 (2-7)
whence
I < 3. (2:8)
Since B(z, t) is an even function of ¢, B(z, t) need be
computed therefore only in the range

0<t<iz. (2-9)

In order to apply the methods described in this
paper, it is necessary to have a table of values of
the function B(z,t). Table 1 gives the values of this
function for z in the range 0 <z <40 and for ¢
satisfying (2-9) approximately. If it should prove
necessary, a more extensive table will be published
at a future date. Inspection of Table 1 shows that,
in the range defined by (2-9), the magnitude of no
entry exceeds unity, in agreement with the inter-
pretation of the function B(z,t) as an average of the
cosine. It is of some interest, however, that outside
the range defined by (2-9), computation shows that
B(z, 1) increases with extreme rapidity. For future
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Table 1. The function B(z, t) defined by equation (2-2), where z and ¢ are given by (2-3) and (2-4)
The entries are the values of 104 x B(z, t)
t
\I 6.0] 5.615.2 I 4.8 u.l.l b.ol 3.6] 3.2] 2.81 2.4} 2.0]1.6 1.2 0.0| V%
0,0{10000]37068{+1478( -91| +7] -65] -70f -271+13 -4j22.0
0.2[+9933| +99354+125 | -172 +37| -90] -134] -85] +10] +177(21.8
0,4}+9735|+9740]|+9168 | -111 +52} -100{ -1781-133{ 46 +335(21.2
0.61+9511149420[117859 | +324 +89 +59| -92| -1981-160] +0 +447120.8
0.8[+8967| +B983||31788 |+1k99| -36] +1u9] -17| -24| +67| +55] -69] -178|-182] -6 +49020. 4
1.0[+B515]+BhLo| +D518]+3952| -95] +170] +16f -77} -1| +41| -32| -131}-138] -22 +456(20.0
1.2(+7767|+7802| +7506{1+8408| -13| +233| 455} -113] 73] +17| +22| -9 -90] -26 +318{19.6
1.5{+7039|+7084| 47221158021 +u2l| +39| 87| -12k| -135| -13] +5u| +25] -2u| -18 +179]19.2
1.6{+6247|+630b| +647u[l27270 +1521] -86] +96] -106| -176] -L5] +88| +110] +48| -17 -26{18.8
B{+5410 [+5478| #5603 +6026) +372h | -171| +69| -61| -183[ -71 | +107| #a79fe117 [ 23 -236[18.%
+h506 | +4626] +5865| +52650+7593| -91 +1 -0l -154| -88| +106| +221|+169| -6 -417118,0
43675 |+3765| +4036] +4u92]13815 | 43464 -98| +59| -89 -89 +86| +227|+296| +3 -539117.6
LA 142815 |+2914] 43215 +3720§23182 (#140T| -194] 498 #OF -T1| +49| 4193141021 +12 -580{17.2
2,6[+1983 [+2091 | +2L17{ +2966] +3TuT[+3437| -215| +100] +98] -36 +1} 4125|4155 | +20 -528(16.8
2,8]41196 |+1311| 41658 +2243| +30780+58353 ) -52] +58] +181] +13| -u8| 430 +25 -389[16.4
3.0 +470| +550| +952|+156b{+2439](12130 | +455| ~19} 4229} +68| -88| -7u| 46| +26 -180)16.0
3.2| -182] -6o| +311] +939]+18i2[l1978k [+1516} -93| +223 | +118 | -112] -172] -8 | 423 +6915.6
3.4 -7152] -629| -256] +319]|+1295[+252014+3386] -98] +156 | 4150 | -112] -2u4|-166} 415 +320[15.2
3.6}-12291-1108| ~7ho| -111| +803|+2033(+6357] +69] +34|+152| -89| -277|-225{ +3 +533 (14,8
3,8]-1610{-1493]-1136| -523| +372}+1588[107u6) +5u7| -113 | +117| -u5] -261}-250| -10 +6T1 (141
4.0]-1692 |-1781|-14h2| -857|  +5|+1186{26866|+1508] -233| +42] +10f -196]-233 | -24 +708 |14.0
4,21-2075(-1972|-1557]-1110] -295] +835[+23u6[1+3148| -250 | -64| +63| -90]-175| -35 +63213.6
L.4]-2163 [-2070}-1784 | -1283| -529| +332| +1972f+5672] -G2} -183 | +100| " +Lo| -81} -4l +449 13,2
1.6 (-2160 | -2079 | -1827 | -1381 -%g% +2(7| +16: ‘%282 +ig | -27 ﬁ%% +172 o%g -0 +181 [12.8
4,8)-2075(-2007|~1793] -1409| - +71| 41314415151 {+1512 ) -30! +201| +1] ~31] -134{12.4
5.0 -1918] -1863| -1690] -1372[ -8G1| -odf +103d +2621l42957| -197] 423 +3u2[+258] -15 -uy7l12.0
5.2|-1699] -1659| -1520 -1279| -862| -20G +783 +22301+5 #115[ -5kl 4337|4325 43| -709[11.5
5.4 -1431| -14051 -1317] -1139| -B16| -28l4 +569 +1858+82K1] +712| -120| +261f +340| +33 -874|11.2
5.6]-1127) -1115]-1070| -951] -738| -325 +379 +1520412131|+1671| -130 +219]+293] +56) -908]10.8
5.8] -801( -803) -798] -757( -628 -336| +22k| +1168] +2736[+3063 -30| -66]+186] +73 -796(10.4
G.0| -h66| -480| -513| -535) -u96) -321f +96| +89u|+225hf+ugu3] +2l6| -253| +27| +78 -544]10,0
6.2 -13h) 159} -226| -307| -351( -285|' -5| +629|+1800+7343| +765| -393|-159| 467 -182| 9.6
G.4] +162] +147] +50| -81| -199) -233) -81| +394|+1378[110265 #2187 -k25|-343} +39 22| 9.2
6.6 +h72] +haol +308| +13u] -u9] -172| -136] +191| +gouf+asiufl+erso| -288|-u86f -6 +665] 8.8
6.8 +727| +678| +537| +330f +95|.-103| -171| +20f +650|+1960||+4311 +75|-549] -62 +1017] 8.4
7.0 +539| +885) +732| +500] +225| 33| -190| -120| +3i9|+Lisilles23s! +703|-ko2|-121 41237| 8.0
7.2|+1102|+1047 | +887| +640] +338| +34| -194| -229] +93]|+1003|}+8u98|+1620].286}.171 +12741 7.5
24 0.0 [0.2 {o.b Jo.56] 08] 1.0f 1.2 1.4 1.6[1.8 :
2 32,0 | 32.% | 32,8 | 33.2 | 23.6 | 34.0 | 3b.4 [ 34.8 | 35.2 | 35.6 | 36.C
4 22,4 [20.8 |23.2 |23.6 [2u.0 |oub | 248 {252 | 25.6 | 26.0 | 26.b | 26,8 tN 3
L 22:h | 22,8 |23.2 |23.6 5 2 - L0t | 0.0 | +172 | 4257 | #300 | +29k | +2h3 | +156 | +46 | -69 | -170 | -2u3 | -275
0.0| -177 | -317 | -403 | -k23 } -377 | 274 | -132 427 | +176 | 4293 | +361 | 4370 0.4 | 4142 | 4215 [ 4253 | 4250 | 4208 | +13 +lk2 -55 | 141 | -204 | -23
o.| -1u3 | -263 | -339 | -359 [ -323 |--237- | -118 | 416 | +143 | +2uk [ 4304 | 4315 0.8 | +70 | +111 [ 4138 | +136 { +106 | +7 +29 | 23| .71 | -106 | -1
0.8| 61 [ -130 | -176 | -193 | -179 | <137 | -76 -4 | +66 | 4123 | 4159 | +170 1.2 -6 -4 2| % +3 + +5 451+ +3 41,
12| +13 | 41 474 43 -2 -6 94§ -0] -l 8] -5 -1 1.6 | M€ | -7 2 98 | <86 -go A L7 o +88
1.6 +3u | +87 [+124 [+1u0 | +134 | #4107 | 464 | +#12 | -bo | -84 | 113 [ w123 g:g -3 :3; 2 -:_lg?, -%é :5; :38 _io :’10: ,,é +iok
g-g ;g :Ig *if‘g 15 2.8 | +11 | /27| #9 | +9 ) +5| «do | 33| B[ “lo| A5} ©
. B - - .2 - 1 - +81 2 2! 5 - -
2.8 u 22 33 3.6 -3% ’37 ?E 4%;:{ +8s5 :gi :2 :kl'; +1g -%g -Eé
3.2 4715 | +19 -37 L0 -27 -1 0] 15 | + 43 +35 | 430 [ 420 +6 -
36| ot | 412 | 42 Wb | 423 | #h| b | 29| 3| o | -35] 25| 1| sk| 418
0 +3 1 419 | +27 4.8 [ 474 [ +u +16 [ -1 = | 78 | - - - mn
L.4| -126 | -115 -81 5.§ 4;3 -95% +32 +}2 tg -;"i -19 -;% -?’: -21521 -;2
" . =2 -1 ~t . +1! 1 428 | 41 +6 -1 -8
B I B 8o | B | | | | YN B B B B s
26| vao3 | -85 | -8 IEFEIEIEIEIEIRFIEIEIE IR
. + e ¥ E - e - -
6.0]20309 110065 pilé6 Pal R W BB | | A R 2| 3
2; 15358 7.6 | 465 | +ih +5 | -2 28 | 12| +1u | 43| +w2 | 432} +10
B 8.0 | +23; -66 - s7h | 482 | + 21 |- -6 ST ST
g.g h207£ 17917 46502 +2784 | <225 9&% =30 +§g ‘-3’3 -] -51
. L7222 {19601 41791 | +1 - -
tNF 27.2 | 27.6 | 28.0 | 28.4 | 28.8 | 29.2 | 29.6 | 30.0 | 30.% | 30,8 | 31,2 | 31.6 9.2 TP 55_9; zmgl ~73§°§
0,0f +323 | +226 | +97 | 44 [ -174 [ -27% | -328 | -329 | -280 | -188 | -69 | +58 2|
0.4] 4276 | 4196 | +87 | -32 | -143 [ -229 | -276 | -280 | -239 | -162 | -62 [ +ks t 36.4 | 6.8 40,0
0.8 +153 | +113 | +57 -7 -68 | ~117 | -6 | <151 | -133 9k k2 | 416 0.0 | -265 | -z12 +186
1.2 +2 +5 +7 +8 +7 +6 +3 +0 -3 -5 -6 -6 0.4 | =225 | -182 4159
1.6 1u | -87 | -8 | -2 [ +3 | +80 [+103 [+m0 | w8 | 472 | 435| -6 98| 122 - +%9
2,0 w5 | w120 | 79 | -25 | 421 | 81 | +136 | 4132 | +127 [ 4201 | 461 { 411 : -
2.4 -82 =17 -59 -32 -1 +30 +55 +71 +15 +47 +21 1.6 +88 =7 -66
2.8 +28 | +20 | 411 o -1 9| 23 28| -20 | -1 -6 +3 gﬁ *%g’ 12 -gg
3.2 +103 | +103 486 | +56 | 417 -23 -57 -82 -92 -86 -67 | =38 2.8 -15 -12 49
3.6| +86 (+102 |+101 | +82 | +50 | +#10 | -31 | -65 | -88 | -95 | -86| -63 3.2 | <11 | -12 +6L
4.0 4+l +18 +28 +33 431 +23 +11 -4 <19 -29 -35 =34 2.6 -70 -85 +T4
4.b -41 -60 -61 -61 -his -21 +4 | +26 | 443 451 | +49 | +39 k.g -gé =321 +32
W8] +b | W1 | 77 | -96 | 96| -8 | 86| -7 | #33 | +65 | 8| +67 5 S =27
5.2] +37 | +2u | 43 | <20 [ 39| 50| -s9} 37| 16| 48[ 31| +k8 w8 -2
5.6 61 | -2u | +13 | #b1 | 455 | +5u | #2 | 422 | 0| <18 | 30| -33 2 Bl =2 2
6.0 79| oo | -7h | -3 | 1k | 458 | 485 | 400 | +73 | #a2 | W | -37 2ol | 3 118
6.4 +54 +67 +40 +2 -25 -32 -19 +5 +28 +h2 +41 +26 6.h - w2 )
6.8| 4259 | 78 | -uz | 457 (4106 | B9 | 43k | 25| 65| -5 | -9 | -29 e8| B
7.2| 29434 |13550 [+5385 1668 [+270 | -75 | 51 | 426 | 451 | +22 | -20 | -67 12| -6 | =%
7.6 66926 23197 [1k8L8 |+5692 |+1655 | +205 | -116 -63 +30 7.6 7 Y
8.0 77083 [37358 |16287 |+6071 |+1721 8.0 +1h +29
8.k | -63 | -u3
8.8 | o5 | =2
9.2 |+1876 | +2i9
9.6 59377 -83 11 | 435 | 412
10.0 2570k 148334 141957 | 4164

application we observe that B(z,{) approaches zero
with increasing z, i.e., in view of (2-3), with increasing
7 or ¢ or q or ¢'.

3. The structure invariants |E[Z—1

In this section we introduce the basic definitions
and notation and prove some preliminary results
which will be needed later.

The central theme in this section is the formula
(Hauptman & Karle, 1955)

|Enl2—1=N{(IEx2~1) (| Bnyl*— 1)),  (3°1)

valid for the case of IV identical atoms per unit cell

and under the restriction that no two interatomic
vectors coincide, ¢.e. that the Patterson function
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contain no overlapping peaks.* The latter requirement
rules out, for example, the space group P1, for which
the correct formula is (Cochran, 1954)

[Bult—1 ~ (N2 {(1Bxl2— D(1Bu = DY, (32)
subject now to the restriction that, except for sym-
metry-related vectors, no two interatomic vectors
coincide. The symbol ~ in (3:2) replaces the exact
equality of (3-1) since, for simplicity, a term of the
order of 1/)/N has been suppressed in (3-2). A major
aim of this section is to exhibit (3-1) and (3-2) as
special cases of a single, more general formula, valid,
at least approximately, in the case of unequal atoms
and, of greater significance, in the case that arbitrary
numbers of interatomic vectors coincide. In particular,
our main formula (equation (3:20)), in contrast to
(8-1) and (3-2), is space-group independent, contains
(3:1) and (3-2) as special cases, and clearly shows the
origin of the discrepancy between (3:1) and (3-2).

As usual, in the following definitions, r; is the
position vector of the jth atom, the atomic number
of which is Z;, and N is the number of atoms in
the unit cell.

N
DEF. 3:1. 0, = ZZ;‘.

j=1

DEF. 3-2. B, = (1/0%’2)3' Z; exp (2mik.ry).

DEF. 3:3. rjp=r;—Try. !

DEF. 34. If j+k we define Zjx by means of
Zig="1Zilg .

We list next, as immediate consequences of Def.
3-1-34, the following formulas:

N
|Ex|2—1 = (1) 02) X Zj; exp 2mik.ry);  (3-3)
VS
1

(Eg2—=1)=0; (34)
Eo = o,/0}%; (3:5)
N
2 Zijgr = o}; (36)
7:17
N
3 2y = 02— 03; 37

i*7
1

* Tt should be emphasized that, under the conditions
stated, (3-1) has exact validity provided that the average on
the right is taken over all vectors k in reciprocal space.
In the attempt to confirm (3-1) with experimental data one
is faced with the complication introduced by the necessity
of averaging over only a finite sample from the infinite
population of vectors k. One approach to the problem of
estimating the errors arising from such finite sampling has
already been described by Vaughan (1959). The further con-
sideration of this problem is outside the scope of this paper.
Similar remarks apply to § 5.

37 = o (38)
K
N
3272 = oi—o, (3-9)
i*7

Der. 3-5. If j+k we define wjk, the ‘weight’ of the
vector rjx, by means of

wip = Y Zj'k' ,
ik

(3-10)

where the summation is extended over all pairs
(', k') such that

T+ T =0. (3-11)

If j=F we define wj;r to be zero.

DEF. 3-6. The symbol ¢j is defined by means of

ek =Wik/Zjk (3-12)
if jk. If j=Fk, ¢ is defined to be zero.
Since the equation
Tjk+Ti;=0 (3:13)

implies that (3-11) always has at least the one solution

i’ =k, k'=j, and since Zj; = Zy;, it follows that

e =1 if j+k. (3-14)

Again, in view of rj; = —rg, (3-11) implies

ryj+rr;>=0, and conversely. Hence, in view of
Zin=Zrj, (3+1), and (3:12),

Wik =Wkj, Ejk=Ekj . (3-15)

TueoreM 3-1. For arbitrary structures
(1 Bx2=1) (| Bnyxl®— 1)

A'I
= (1/0%) 3 Z}e; exp (2nih.rjx) . (3:16)
ik
Proof: Appendix I.

CoroLLARY. For a structure consisting of N identical
atoms gjx may be interpreted as the number of vectors
;% satisfying (3-11), and we have

(B2 = 1) (| By yxl®— 1))k

N
= (1/N?) X g exp (2aih.ri) . (3:17)
i¥k
1

It is an important property of the gj that their
(weighted) average is the average of (|Ey[2—1)2.
In fact, setting h=0 in theorem 3-1, we obtain

TueOREM 3-2. For arbitrary structures
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N
szzk Eik
N 7k
B2 =12y = (1/03) X Ziey = —-
g 37
ik

1

(3-18)

CoroLLarY. For a structure consisting of V identical
atoms we have

N
(Ek2—1)%)x = (1/N2)§ &k - (3-19)

s

1

The main result of this section is contained in

TurOREM 3:3. For arbitrary structures

~ (% 1B 12—1) (| Bnyxl® —1) s
|Eyl2—1 ~ (—— —1) B 1)

. (3-20)
Proof: Appendix II.

CoroLLARY. For a structure consisting of N identical
atoms we have

N-1
[Enl?—1 ~ m((lEklz—l)(lEh+kl2—l)>k .

(3-21)

We conclude this section by showing how our
formulas are specialized to yield the known results
(3:1) and (3-2).

We assume first that no two interatomic vectors
coincide. Then gjx=1 for j+k and, in view of (3-9),
equations (3-18) and (3-19) reduce to

{|Ex2—1)x=1-04/0}

(| Exp=1)2)=1-1/N

(3:22)
and

(3-23)

respectively. Hence equations (3:20) and (3-21) now
become

~ (0'%/0'2)_1
[Buf?—1 ~ m‘((lEkP_l)(lEhi-llz_ 1))1;3.24)
and
[Epl2—1 ~ N((|Ex2—1)(|Eppul2—1))k  (3:25)

respectively, the second of which is the exact formula
(3-1). 3
Finally, we assume that the space group is P1 and
that, except for symmetry-related vectors, no two
interatomic vectors coincide. Then, if j+k, &r=2
except for the case that r; = —ry when e = 1.

Theorem 3-2 now becomes
N N
1 Bx]2=1)2%)y = (2/03)_55 Z3—(1/03) ZIZ;*
7 1=

= (2/03)(03 — 04) — 04/ 05 =2~3 0,/ 0} . (3:26)
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Theorem 3-3 now reduces to
o%)o,)—1
Balt=1 ~ S (B - B~ 1
4-2 (3-27)

or, for the case of N identical atoms, to

N-1

2 1 Ay — .

[By2—1) (1Bngn 2= 1))k, (328)

i.e., except for terms of the order of 1/N, to equation
(3-2).

Comparison of equations (3-18), (3-22) and (3-26)
clearly shows that the presence of coincident inter-
atomic vectors or, what is the same thing, overlap
in the Patterson function results in an increase in the
average value of (JEy|2—1)2. As has already been
observed, the occurrence of such coincidences spoils
the exact validity of (3-1), but the more general
formula (3-20) is not adversely affected. It should be
pointed out that, although the occurrence of coincident
interatomic vectors affects the average value of
(|Ex|2—1)2, the average value of |E|? is always unity.
Hence the usual method (e.g. Karle, Hauptman &
Christ, 1958) for placing the |Ey|2 or an absolute
scale remains valid.

4. The three kinds of interaction

DEF. 4-1. The notation u=#v#p shall mean that
u+v, v+p,and g+ pu.

DEF. 4-2. A triple of interatomic vectors (rjx, rjx,
rjp), with j%k, 5 k', 7" £k", is said to constitute
an interaction if they satisfy the equation

i+ Typ 4Ty =0, (4-1)
Permuting the vectors in an interaction, or reversing
the order of each of the three pairs of subscripts
yields, in general, twelve interactions (six if two pairs
of subscripts coinecide) which, however, will be con-
sidered to be the same interaction.

DzF. 4-3. Two interactions are said to be equivalent
if the three vectors constituting the first interaction
are equal, in some order, to the three vectors
(or their negatives) of the second interaction. In
particular, any interaction is equivalent to itself.

DEF. 4-4. An interaction is said to be a wvalid
interaction if, by suitable arrangement of its elements,
it may be written in the form (r,, r,,, r,,). Thus the
valid interactions are identified with the interatomiec
triangles, including the degenerate ones which arise
when three atoms happen to lie on the same straight
line.

DEF. 4-5. An interaction is said to be an induced
interaction if it is equivalent to a valid interaction.
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In particular every valid interaction is also an induced
interaction.

Evidently a structure contains induced interactions
(other than valid ones) if and only if certain inter-
atomic vectors coincide.

DEF. 4-6. A chance interaction is one which is not
an induced interaction (or a valid one).

DEr. 47. The symbol Z,,
Zpo=2,27,

is defined by

4-2)
where pu+v+op.

DEr. 4-8. If u+v+p, the symbol 7, is defined to
be the number of valid interactions equivalent to the
valid interaction (r,,, I,y Tp,).

Since every valid interaction is equivalent to itself
it follows that

Nuwe =1 i putvEp. (4-3)

Evidently, also, the value of 7,,, is unchanged under
all permutations of the indices.

DEr. 49. If pu+v+p, the symbol &up 18 defined
by means of
(4-4)

Eug=2 6#,,8,,989},/ Nuve +

If any two or all three of u,v, ¢ are equal, then &g
is defined to be zero.

5 4

1 2

Fig. 1. Structure consisting of six identical atoms at the
vertices of a regular hexagon.

The structure consisting of the vertices of a regular
hexagon labeled as in Fig. 1 readily yields examples
of the three kinds of interactions (Table 2). The
three interactions listed in the second column are
equivalent, in the same order, to the valid inter-
actions shown in the first column.

Table 2. Classification of several interactions
obtained from the structure of Fig. 1
Valid Induced

interactions interactions
(Tyg, Tpg, Tyy) (Tygs Tgss Tag)
(Tyg, Tgy, Tgy) (ryg T35, Tgy)
(Tyg, T5y, Tg5) (Teg) Iy T15)

Chance
interactions
(ry9, T34, Tyg)
(T19s T5y» Tg)
(Ty9, Tygy Tge)

If the atoms in the structure of Fig. 1 are identical,
then evidently e2=¢e13=2 whereas eiu=1. Again,

7e3=2 since the valid interactions represented by
(T12, I23, T31) and (rgs, T'ss, r'ea) are the only ones
equivalent to the former. Similarly #ies=n35=2.
It follows that ei25=£135=8 while &124=4.

5. The structure invariants P14+ P2+ @3

The central theme in this section is the formula
(Karle & Hauptman, 1957; Vaughan, 1958)

|E1E2E3| cos (@1 + @2+ @3)
= (N3/2/2) ((|1Bx[2= 1) (| Eny k2= 1) (1B _pypil2— 1) )i
+(1/N12)(|E1[2+ | Bs|2 + | Eg[2 - 2) , (5-1)

in which we have written E; for Ey,, @; for the phase
@n; of the normalized structure factor By, i=1,2,3,
and where we have assumed (and shall assume
throughout) that

hy+he4h3=0 , (5-2)
so that @1+ @2+ @3 is a structure invariant. Equation
(5-1) has exact validity if the structure consists of N
identical atoms per unit cell and if the only inter-
actions are valid ones. The latter requirement rules
out, for example, the space group PI, for which the
correct formula is (Hauptman & Karle,1957; Vaughan,
1958)

|E\E2E3| cos (@1 + @2+ @3)

~ (N32/8). ((IEx>— 1) (1Bn;4xl2~ 1) (1B _nyyil>— 1))k
+ (1/NV2)(| B2+ | Eaf2 + | Es2—2) (5-3)

provided that, in each asymmetric unit, the only
interactions which occur are valid ones. The symbol ~
in (5'3) replaces the exact equality of (5-1) since,
for simplicity, a term of the order of 1/)/N has been
suppressed in (5-3). A major aim of this section is to
exhibit (5-1) and (5-3) as special cases of a single,
more general formula, valid, at least approximately,
not only in the case that the structure contains
unequal atoms but, of much greater importance,
in the case that arbitrary numbers of induced inter-
actions are present, i.e. that arbitrary numbers of
interatomic vectors coincide. In fact, our main
formula (equation (5-12)), in contrast to (5:1) and (5-3),
is space group independent, contains (5:1) and (5-3)
as special cases, and clearly shows the origin of the
discrepancy between (5-1) and (5-3). In §6 and §7
we generalize the results of this section to the case
that chance interactions may also occur and, at the
same time, show how previous knowledge of molecular
structure is to be used.

We begin with the following result which we assume
to be known (Hauptman & XKarle, 1962, equation
(2-3:7)):

TrEOREM 5-1. If hy+ ha+4 hg=0, then
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|E1E2E3] cos (@1 + @24 ¢3)

N
~1/63?) 3 Z,,cos 27 (h,.

u#V#e

+(03/03"®) (IE112+l32(2+[E312—

Dgr. 5-1. A structure is said to be determinate if
it has no chance interactions.

r/w - h.} . rzzo)

(54)

THEOREM 5:2. For determinate structures

(E2=1)(1Bny k2~ 1) (1B _pgixl2~ 1))k
N
=(1/03) X ZZ%,6u,c08 27(hu.1T,,—h3.T,,) .

u¥vEg
1

(5:5)

Proof: Appendix IIL

Just as a suitable weighted average of the e was
found to be equal to the average of (|Ey|2—1)2
(Theorem 3-2), so now we find that, for determinate
structures, a weighted average of the ¢,, is equal
to the average of (|[Ey|2—1)3. More precisely, we have

THEOREM 5:3. For determinate structures

N

2 sz@b'/we
N .M,I,Q
<(IEKI2— 1)3>k = (1/02) 2 Z/);vgelwg = N
/l#i’#@ 2 Zﬁvg
I-l’i’,Q

(5-6)

Proof: Set hy=h3=0 in Theorem 5-2 and employ
the fact that ¢,,=0 if any two or all three indices
coincide, as well as the identity

A= 5 727272 = > z,,. (5+7)

1y {’, Habse
Using Def. 3-1, a straightforward computation yields
THEOREM 5-4.

N
A
2 2y =

o} —30102+203, (5+8)
rEvEQ
1
N
X237, = 0102— 03 . (59)
v
1
COROLLARY.
N
2 7%, = 0}—80204+206, (5-10)
p¥EvEQ
1
N
S Z,7% = 0204~ 05 . (5-11)

nEv
1

The main result of this section is given by
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THEOREM 5'5. For determinate structures
0i—30102+203
E POl
FuBaalcos (a+ @t 0) ™ Gon (B o= 1%
X {(1Ex|2—1)(|Epy1x12— 1) (|E_py1x2— 1))k
+(03/03®) (| E1 |2+ | B2|? + | Esf? — (5-12)

Proof: Appendix IV.

CoroLLARY. For determinate structures consisting
of & identical atoms

N—-1)(N~-
{E1E2E3] cos ((,D1+(P2+ 973) Nl/(2< IE )]g -1 3)>k

X {(|Bxl>—1)(|Bny 12— 1) (| E_pyik2—1 Mk
+ (L/N12)(| By |2 + | Ea|* + | E5|2 - 2) . (5-13)

We concludethis section by showing how our main
formula (5:12) is suitably specialized to yield the
known results (5-1) and (5-3).

We assume first that no two interatomic vectors
coincide and that the structure is determinate. Then
8= 8,,= €gu=",o=1 While ¢,,=2 if u+»+p. Next,
in view of (5-10), (5-6) becomes

(B2 =10 =2(03 —B0204+206)[ 0} , (5-14)
or, for the case of N identical atoms per unit cell,
2N N-2
UEx2=1)%)k = A’,ﬁ =2 (5-15)

Equation (5-12) now reduces to

63/% (03— 30102+ 203)
2(03 — 30204+ 20%)

X (|Bx|2=1) (1 By k]2 —1)( |E—h3+k|2'—1)>k

+ (03/ 63®) (|E1 |2+ | Eo|2+ | Esl2 ~ (5-16)

or, for the case of NV identical atoms per unit cell,
to equation (5-1).

Finally, we assume that the space group is PI,
that, except for symmetry related vectors, no two
interatomic vectors coincide, and that the structure
is determinate. Now ¢,,= ¢,,= &,,=2if pu= v+ g except
that if r,=—r, then e —1 if r,=—r, then ¢,=1,
and if r, ——r then sgﬂ—l Again, if ,u:{= v, ‘then
Nug =2 so that &,,=8 unless r,= —r, or r,=—T, Or
r,=—r, in which cases Euvp = 4

Now (5 6) becomes, in view of (5-10) and (5-11),

(1B~

|E1E2E3| cos (@1 + g+ @s) ~

(12/0}) = Z,7}

uFv
1

1))y = (8/0}) 2 Zyp—

AL
ra2jod) 2 2;
=(8/03) (03 — 30204+ 20%)
—(12/03) (0204 — 06) + (12/03)04

=8— (3604/0%) + (400/03) (5-17)
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or, for the case of N identical atoms per unit cell,
|Ex2—1)2)=4(N —2)(2N —5)/N2.  (5:18)

Equation (5:12) now reduces to

32 (0% — 30102+ 203)

4(203 — 90204+ 1006)

X {1 Ex2—=1)(|Epy k= 1) (| B _ngaxl®—1) Dk
+ (03/03?) (|E1]2+ | E2|2+ | E3)2—2)

|E1E2E3| cos (p1+ @2+ @3) ~

(5-19)
or, for the case of N identical atoms per unit cell, to

|E1E2E3| cos (@1+ pa+ ps)
N38/2(N — 1
~ (ZEV 5 < [Exl2—1) (| Eny k12— 1) (| B _pgrx2— 1) i

+ (1 NV2)(|Er[* + | Baf? + | Es]*—2) (5-20)

i.e., except for terms of the order of 1/N, to equation
(5-3).

Our discussion clearly shows how the presence of
the induced interactions results in an increase in the
average value of (|Ey|2—1)3.

6. A generalization

In this section we extend the results of § 5 to arbitrary
structures and, at the same time, show how the known
features of the molecular structure may be used.
Since now we permit the occurrence of chance inter-
actions, equation (III-2) no longer implies (5-5).
Instead, by averaging over all vectors k, (III-2) leads
to

(1 Byf2— 1)(|Ehl+k12 D (B _pgexl>— 1))k
=1/0% 2 Z,wgep,@ cos 2z (h;.r,,—h;.r,)
H#v
+C(h1, —hs), (6-1)
where
C(h, W) = (1/03) X ZjxZjw Zj i

X
xexp 2mi(h.rje+ R .r5p)], (6-2)

and 3 means that the sum is extended over all

indjceg, 2, k.5, k', 3", B corresponding to the chance
interactions. (We observe that, in general, there
will be twelve contributors to the total sum corre-
sponding to each change interaction since the elements
of the triple (j, k), (j', k'), (j'', &""), associated with
the chance interaction (rs, rj«, rjxv) may be per-
muted, e.g. (j', k"), (J, k), (7', k'), and the order of
the elements of the three pairs in each such triple
may be simultaneously reversed, e.g. (k,j), (¥',j'),
(£",5"). If however j=j and k=%, for example,
then only six contributors to the total sum correspond
to the interaction.)

Next we employ Theorem 21 to replace

ROLE OF MOLECULAR STRUCTURE IN DIRECT DETERMINATION OF PHASE

exp [2z¢ (h.rje+ h'.ry4)] by its average value B(z, t)
in order to obtain the following estimate of C(h, h'):

C(h, h') ~ (I/O'g)ZijZj'];'Zj”k"B(Z, t). (6-3)
X

We observe that B(z,t) is given by equation (2-2)
while z and ¢ are obtained from (2-3) and (2-4) respec-
tively. The latter equations require a knowledge of
¢,9, and ¢, which are known once the vectors
h and h’ have been specified, as well as a knowledge
of r=rs, r'=r;y4, and @,. However, rjx and r;x- are
the magnitudes of the vectors rjx and ;- respectively
while ¢- is the angle between these vectors. Thus one
possible method of utilizing the known features of
the molecular structure immediately suggests itself:
Use all the known chance interactions (i.e. those
triples (rjx, rjx, Tjx-) which are neither valid nor
induced interactions but which satisfy rj; +rj % + ;-
=0 and are such that the magnitudes of rj, rj%, Tk
are known) to compute as many terms of (6:3) as
possible. Naturally the more complete the previous
knowledge of molecular structure the more terms in
(6-3) may be computed and the better will the resulting
estimate of (6-3) approximate the desired value of
C(h, h’) as given by (6-2). We shall assume then that
C(h, h')is known as a function of the vectors h and h’.
We shall need a preliminary theorem obtained by
setting hy=h3=0 in equations (6-1) and (6:3):

THEOREM 6-1. For arbitrary structures,

(B2 = 1))k = (1/0%) y Zge e+ C(0,0) (6:4)

uFvEe
1
where

C(0, 0) = (1/63) zZn Zjogr Ljoogre (65)

and X means that the sum is to be taken over all

the cflance interactions, each such interaction being
counted twelve (or possibly six) times as already
explained.

Comparison of equations (6-4) and (5-6) shows
clearly how the presence of the chance interactions
Increases the average value of (|E|2—1)3.

Next, returning to equation (6-1) we find

<(|Ek|2 -1) (]Eh1+k|2 -1) (IE—h3 :—klz_' 1)>k“ C(hl, - h3)

&~
=(1/Gg) -2 an'g‘s;n'g

HFEVFQ
1

Iy
2 Z},4€,m c0s 2 (h1.1,,— hs. rvg)l

uEvEe
1

and observe that the expression in braces is the
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average value of cos2xn(hi.r,—hs.r,). However
equation (IV-2), a consequence of Theorem 51 and
therefore valid for arbitrary structures (determinate
or not), yields another expression for the average value,
with different weights, of cos2x(h;.r,—hs.r,).
Substituting from (IV-2) into (6-6), and employing
also (6-4) and (5-8), we find
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difficult to see how to employ equations (6-8) and (6-9)
to cope with the problem arising from the occurrence
of approximate chance interactions which one would
expect, in view of the limited number of data usually
available from experiment, should somehow be taken
into account. In the next section we show how to
overcome these difficulties.

— 30102+ 203

B =1) 1Bkl = 1) (1B _pgyxl*— 1))k — C (b1, — hg)
N 3/2 B2+ |Esl2+ |E 2_21
~ (1/0’2) 2 Z‘zzwgsyvg _‘NO‘Z__ ]EIE‘ZES[ COoSs ((p1+(p2+(p3) - 3(| II |N2[ +| 3l )
u#lv#a l > Z#,,Q > Zuve I
”#;#Q y#;#g
32| B E-E —o3(|E1)2+ | B2j2+ |E5|2—2
~ {{(|By2=1)2)— C(0, 0)} {0’2 |E1E2E3| cos (p1+ @2+ @3) — o3(| E1]2 4 | B2+ | B3| )} ' ©67)

Finally, solving (6-7) for |E1E2E3| cos (p1+ @2+ @3)
we are led to the first main result of this paper:

THEOREM 6-2. For arbitrary structures

o] — 30102+ 20
\B\B2Bs| cos (g1 + ot gs) ~ 1—012722* :

By 2= 1) (| Bpy x> = 1) (B _pgikl*— 1))k — C(h1, — hg)
CIEK2—1)3)x—C(0, 0)
+(05/03%) (|12 + | B2? + | Ba[2 — 2) (6-8)

In view of Theorem 6-1 we also have the

CororLrarY. For arbitrary structures

3 2
|E1E2Es| cos (g1+ g2t @a) ~ - —ms%r &
By 2=1)(|Epyskl>—1) |E hos il = 1)) — C(hy, — hg)
1/0‘3/7 Z ZIZWQE/WU
N#I#g
+ (03/0%2) (|E1|2+ | B2+ | Es|2—2) . (69)

It is to be noted that the expressions C(0, 0) and

(1/03?) 2 Y/

nEvEQ
1

(6-10)

v Eve »

which occur in (6:8) and (6-9), may, since they are
sums of positive terms, be accurately computed only
if the complete molecular structure is known. If
only partial information concerning molecular struc-
ture is available, then it is possible only to estimate
the sums (6-5) and (6-10) by computing those of their
contributors which are known from the molecular
structure. Thus equations (6-8) and (6-9), while an
improvement over the analogous formula (5-12) when
chance interactions are present, are still subject to
error when, in practical application, the amount of
previous structural information is small. Again, it is

7. An alternative
We introduce the notation
r(hi, he, ha) = (03/03?) (| E112+ | B2+ | E5)2—2) ,
so that 7(hi, he, h3) is a known function (of the order
1/ N) of the three vectors hy, hs, hs. Then, assuming

as always that h;+ ho+ h3=0, Theorem 5-1 may be
written

(7-1)

IEIEZE:SI cOos ((p1+ (p2+(]73)
~ (1/03?) 2 Z,,, c0s 27 (hy.1,,—h3.T,)

M#v#e

+ ‘r(h1, hz, ha) . (72)

We imagine that hy, hs, and hs are fixed and write
gi=|h;i], i=1, 2, 3. Next, replace the vectors h; in (7-2)
by vectors k;, i=1, 2, 3, where the k; are arbitrary
vectors subject only to the condition |ki|=¢:,7=1, 2,3
(whence k;+ kz2+ks=0). We then average both sides
of (7-2) over all such vectors ki, ke, ks and observe
that this is equivalent to averaging over all orienta-
tions in reciprocal space of the triangle whose sides
are the vectors hi, he, hs. We employ Theorem 2:1
to replace {(cos 27 (Ki.r,,—Ks.1,))) by B(2, {) which,
in view of (2-3) and (2- ), depends only on the mag-
nitudes qi, g2, g3 of the vectors ki, Ko, K3, assumed
fixed over the present averaging process, as well as
on the magnitudes of the interatomic vectors r,,, r,,
and the angle between them. Knowledge of the latter
is equivalent to that of the sides 7, 7,,, 7, of the
interatomic triangle r,,, r,, r,,. In order to empha-
size this dependence we shall replace B(z,t) by
B(q1, g2, G35 Ty, 73ps 7). Thus we obtain

By, Ex Byl €08 (@i, + Quo+ Pucs) Dikil gz

1/63/2) 2 ‘Z B(‘Il, q2, 35 7' Jws vg7 Q/z)

u#v#a

+ R(qu q2, q3) ) (7.3)
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in which we have written

R(q1, g2, gs) = {r(K1, ke, ka)Dyy;-; (7-4)

so that, in view of (7-1), R(g1, ¢o, ¢3) is a known func-
tion of ¢i, ¢e, ¢s.

Since B(q1, 2, 435 Ty Tvpr 74,) depends in a known
Way OIL g1, G2, 43, Tyy» Thgs Tou» the right hand side of (7-3)
may be computed, for fixed qi, ¢z, g3, provided that
(the sides of) all interatomic triangles (including the
occasional degenerate triangles which arise when three
atoms lie on the same straight line) are known. Now
knowledge of some or all of the molecular structure

implies that at least some of the smaller interatomic
triangles are known. Many or most of the larger
interatomic triangles may not be known. However,
as has already been pointed out, the value of the
B function is relatively small for the larger interatomic
triangles. Since the B function takes on negative as
well as positive values, it follows that, in general,
we may obtain a valid estimate of the triple sum on
the right hand side of (7:3) by including only those
contributors for which the corresponding interatomic
triangles are known. Naturally the more complete
our a priori knowledge of the molecular structure,
the closer will this approximation be to the correct
value. Henceforth we shall assume therefore that the
value of the left hand side of (7-3) is known as a
function of g1, g2, g3 and shall denote it by D(q1, g2, ¢s):

D(g1, g2, ¢5) = | By B By | €08 (@rey + Py + Prcg) D= »
(7-5)
where, naturally, k; + ke + kz=0.
We return now to equation (6-8) which we write
in the form

|E1E2E3[ COS ((}71+(}72+(P3)
~ K{a(hy, he, hs)—8S(q1, ¢o, g3)}+r(hy, hs, hg),

where (7:6)

. 0i=30102+205 _
o3 *({(|Ex[2—1)3) — C(0, 0))
is an absolute constant,
S(ql) q2, q3) =O(h1’ - h3) ) (7'8)

in view of (6-3), is a function only of ¢, g2, ¢s,
r(hy, hs, hg) is given by (7-1), and a(hy, hs, hg) is
defined by means of

(7°7)

a(hl, hg, h3)
= (B2 = 1) (IBppsl2— 1) (|E_pgikl2=Dic,  (7°9)
so that a(hy, hs, hs) is a known function of the vectors
hy, he, hz. There remains only the problem of deter-
mining K and S(q1, ¢z, ¢a).
We rewrite (7-6) in the form
|E1E2E3| cos (¢1+ @2+ @s) —r(hy, he, hy)
K
~ a(hl, he, ha)_S(qla gz, 93) s

(7-10)

and average over all orientations in reciprocal space
of the triangle with sides hy, hs, hs. Writing

a(ky, ke, Ka))usimgs = A(q1, g2, g3),  (7+11)

where ¢;= [h;|=k;[,7=1, 2, 3, so that, in view of (7-9),
A(q1, gz, g3) may be assumed to be known as a function
of q1, g2, g3, we find, using (7-5) and (7-4),

S(g1, g2, 3) ~ A(q1, g2, 43)
_ Dlg1, ¢, g3) = R(q1, g2, ¢3)

.12
Hence (7-10) may be written
|E1E2E3| cos (g1 + @2+ @s)
~ K{a(hi, he, hs)—A(qs, go, g3)}
+ D(q1, g2, g3) +7(hy, he, hg)— R(q1, g2, ¢3) . (7-13)

In order to obtain the constant K from (7-13) it
would be sufficient to substitute any values for
hy, he, hs satisfying (5-2) except for the fact that,
in general, the corresponding value of @i+ @2+ @s is
not known. However, for all space groups other than
P1, it is always possible to choose hj, hs, hs in such
a way that, as a consequence of the space group
symmetries, @1+ @2+ @3 is 0 or 7. With such a choice
for hy, he, hs, the value of cos (g1 + @2+ @3) appearing
in (7-13) is + 1. The ambiguity may be resolved by
observing firstly that, in view of (7-1), (7-4) and (7-5),
the last three terms of (7-13) are relatively small,
and secondly, from (7-7) and (6-4), that K must be
positive. Hence cos (@14 @z+ @3)= +1 or —1 accord-
ing as the coefficient of K in (7-13) is positive or
negative. Naturally, in practice, hi, hs, and hz are
further restricted by the requircment that | By By By |
be relatively large. In order to improve the accuracy
with which K is determined, it is desirable also to
employ several triples hy, hs, hy subject to the con-
ditions already described. Once K has been deter-
mined, then S(qi, g2, gs) is found from (7-12),

The chief result of this paper is contained in equation
(7:6), where K is obtained from (7-13) in the manner
described, a(hi, hs, hs), A(qi, ge, gs), r(hi, hg, h;),
R(q1, g2, g3) are given by (7-9), (7-11), (7-1), (7-4)
respectively, D(qi, gz, gs), defined by (7:5), is found
from the right-hand side of (7-3) (employing naturally
all the known interatomic triangles, as well as Table 1),
and S(q1, g2, ga) is then obtained from (7-12).

8. Concluding remarks

In this paper the problem of determining the phases
of the structure factors directly from their magnitudes
has been formulated with great generality. The
resulting formalism is sufficient to cope, not only
with the annoying obstacle arising from the presence
of rational dependence among the atomic coordinates,
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but also with the problem of utilizing whatever
previous information concerning molecular structure
may be available. The treatment is admittedly an
approximate one, so that two directions for further
research are suggested: (1) to estimate accurately the
magnitudes of the errors involved (presumably of the
order of 1/)/N) and (2) to improve the accuracy of
the formulas here derived.

Our formulation leads to two procedures, the second
of which appears superior, for the actual determination
of the phases. In order to facilitate the implementation
of these methods, a short table of the important
function B(z,t) has been included.

APPENDIX I
Proof of Theorem 3-1:

N
(El>=1)(IBnkl*—1) = (1/63)121( ZgwZyi
Fik

xexp (2mek. 1) exp [2i(h+ k). k]
N
= (1/03) X ZZjyw

jxk
Pk
1

xexp (2mih.ry) exp [2aik. (vje+15%)] . (I°1)

Averaging (I-1) over all vectors k we find that all
terms on the right vanish except those for which
rjx+1;-=0. For each fixed pair (j, k) summation
of Zjx over all j'&k' such that rjx+ry% =0 yields
wik=Ze, and (3-16) follows immediately.

APPENDIX II
Proof of Theorem 3-3: From Thcorem 3-1,

CUE2=1) (| By k] — 1))

N v
2 Zey | 2 Ziej oxp (2aih. )
i ik
= 0-% - ‘\: i (].I'].)
l 2 Ziej
ilik

The expression in braces is a weighted average of
exp (2zth.rj). However, (3-3), with k replaced by h,
yields the following formula for the average (with
different weights) of exp (2mith.rj):

N
2 ij exp (27’[’Lh . l'j;c)

j¥k
E,2—-1
! ¥ = 02(L2h_|0_ ) }) (11'2)
2‘ ij 1 2
il*k
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in which we have also used (3-7) to replace

¥
ZZ,,C by O‘%—O’z.
jk
1
Identifying these two averages of exp (2mih.r),
we substitute from (II-2) into the last factor (in
braces) of (II-1) and, employing also Theorem 3-2,
obtain the approximate formula (3-20).

APPENDIX 111
Proof of Theorem 5-2:
(1B = 1) (|Bpy 12— 1) (|E_pyix/2—1)
N
= (l/o’g) ZijZj'k'Zj"k" exp (2m’k.r,-k)
¥k

Fye
Y
1

x exp [27i(hy + k). vy ) exp [2700( — ha+ k) . 150 5]

(I1I-1)
N
= (1/0’3) ZijZj';C'Zj"k" exp [2m'(h1.rj;¢— hg.rj'lc')]
P
Fy
1
X exp [275“{. (rjk+ ryr+ rj"k")] . (IIIQ)

Next we average (III-2) over all vectors k and observe
that all contributors to the average of the right-hand
side vanish except those for which rjz+ xyx + x5 =0.
Since the structure is determinate, it has no chance
interactions so that the only non-zero contributors
are those corresponding to the valid interactions or
the induced interactions. There remains only the
problem of summing those contributions to the
average which correspond to such interactions, with
the aim of reducing the sextuple sum (III-2) to a
triple sum over the valid interactions or, more
precisely, to the triple sum shown in (5-5).

We first find those contributors to the average
corresponding to the valid interactions. Two cases
arise. For each fixed pair (j, k) = (u, ») the interaction
(Tyk, Tyokry Tyvp) assumes either the form (r,,, 1, Ty,)
or the form (r,, r,, r,,). Hence the contributors to
the average corresponding to the valid interactions
may be written

N x

(1)03) X Z,, X Z,,Z,,{exp [27i (hy.1,,— hy.1,,)]

T
oy

+exp [—2mi(h;.1,,—hy.1,,)]}

¥
= (2/03) X Z%,,cos2m(h;.r,—hy.1,,).

ESE 3
1

(ITI-3)
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Next, corresponding to each fixed valid interaction
(r,, T, T,,) are those contributors to the average
assomated with all the induced interactions

(Tsx, Tyk', Tjk), including the interaction (r,,, r,,, 1,,)
itself, which are equivalent to (r,,, r,, r,,):
(1/02 ZZj]cZ] K’ Z"'k" exp [275'&“11 Tjp— h3. I'j']g')]
jﬁi’,ﬁi, (I11-4)

where the summation is extended over all j, k, 5, ¥/,
7", k" such that the three vectors rj, Tk, rj g are
equal, in some order, to the three vectors r,,, r,,, T,,,
or to their negatives.

Consider first those terms of (III-4) such that
Tjg=T,,, Tjk' =T,y Tjg =T, Then

exp [2at (hy. 1 — hs. ri'y’)]

is constant with respect to the summation of (III-4)
and is equal to exp [2ni(hy.r,,— h3.1,))]. These terms
of (III-4) then reduce to
I/GZ)Z/W uy vggvoZg,u oK eXP [2nlb (hl . r,uv_ h3‘ rvg)] .
(ITI-5)

Consider next those terms of (III'4) such that
Tjk=T,,, Tj:p* =T, Tj g =T,,. Again

exp (27 (h1.rj5— hs.1j4)]

is constant with respect to the summation of (III-4)
and is now equal to exp[—2mi(h;.r,,—hs.r,)].
Hence these terms of (III-4) reduce to

v h3 . r;ta)J .
(I11-6)

]./Ur) Zﬂl’ Z 6 Z

0 ou

o €Xp [—2mi(h,.r

The remaining ten cases obtained by setting rjx=r,,
Tjrpe= r;w’ Tjrgr= rQM; Cijx= rvg) g = rg/t’ Ljrg = r‘m};
etc., all reduce to terms like (III-5) or (III-6). We
arrange these terms so as to combine exponentials

to form cosines and obtain

2/02 Z,uvge,uvsvgsgu S Cos [275 ( hl vo)]

&7, 0

(IT1-7)

where the symbol § means the sum over the six
N

permutations of u, », g.

For each fixed triple u,», g, (III-7) would give the
exact contribution to (III-4) corresponding to the
induced interactions equivalent to (r,,, r,,, r,,) except
for the fact that each such interaction is counted in
(II1-7) as often as there are valid interactions equiva-
lent to (r,, r,, r,.), i.e. 7,, times. Since we shall
want to sum over all the valid interactions, more
precisely over all u<=v<+ 9, we must divide (III-7) by
Nuwp S0 that we finally obtain (5-5).

ROLE OF MOLECULAR STRUCTURE IN DIRECT DETERMINATION OF PHASE

APPENDIX IV
Proof of Theorem 5-5: We employ Theorem 5-2 to get

N
2
Z ZM"Q 8/“’9

PEIET:
Bl =1)(| Byl = D) (| B pgil2— 1) =——g——
(213
.
) iozzwem cos [272(h, .1, — h3.r,9)]l
x 1— (IV-1)
.“'1'1”*@

The welghted average of cos [27(h,.r,—h;.1,)] in
braces is approximately equal to the average (with
different weights) given by Theorem 5-1:

N
2 Z,,,co8[2x(h,. r,—h;.r,)]

nvEe
1

N
2 Ly,
nEvEe
1
o3
2 iy

nFEvEQ
1

|ELE2E3| cos {1+ @2+ @s)

2

2 (|Bi2+ | Bt + [Eal—2) .

) Z;we

nEVEQ
1

(IV-2)

Substituting back into equation (1V-1) and em-
ploying also Theorems 5-3 and 5-4, we find

B =1)(1Bpil = 1) (1B _pgyxl*— 1))k
632 |E1E2E 3| cos (pr+ @2+ @s)
I —0o3(|E1|2+ | B2+ | E3|2— l
03 —30102+ 203

~ (B2 = 1))y

(Iv-3)

Solving (IV-3) for |E,E:E3| cos (p1+ @2+ @s) yields
(5-12).

The programming and computation of the function
B(z,t), which was performed on the NAREC, the
Naval Research Laboratory automatic computer,
were carried out by Mr Herbert Bixhorn. Some
constructive criticism concerned with the computation
of this function was offered by Dr. Benjamin Lepson
and Mr Richard McGill of the Applied Mathematics
Staff, Naval Research Laboratory. Their help and
cooperation are gratefully acknowledged.
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The Structure and Mechanism of Formation of Pyrolytic Carbon from Cyanogen
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(Received 5 November 1963)

The structures of carbon deposits formed by pyrolysis of cyanogen on a carbon filament have been
investigated by electron diffraction and the influence of cyanogen pressure and filament temper-
ature has been determined. All the deposits show the existence of graphite layer planes and both
the crystal size and the degree of preferred orientation parallel to the axis of the substrate increase
with temperature of deposition. Possible mechanisms are discussed for the formation of carbon
from cyanogen, methods of growth of deposits both along and normal to the graphite ¢ axis being

proposed.

Carbons produced by the decomposition of organic
vapours on heated substrates, particularly carbon
filaments, have been extensively studied (Grisdale,
Pfister & van Roosbroeck, 1951 ; Tesner & Echeistova,
1952; Brown, Hall & Watt, 1953; Brown & Watt,
1958; Cullis, Manton, Thomas & Wilman, 1959;
Blackman, Saunders & Ubbelohde, 1961). One factor
which is of primary importance in determining the
structure of the deposited carbon is the physical
condition obtaining at the point of deposition, the
carbons produced on a solid surface differing fun-
damentally from those formed in the gas phase.
In the first case, the carbon is laid down in small
crystallites which have a high degree of orientation
and is easily graphitized at 2500 °C or above. Gas
phase carbon is, however, a carbon black in which
the individual particles are spherical, and does not
graphitize well even at 3000 °C.

The physical properties of pyrolytic carbons depend
too to a considerable extent on the temperature of
deposition. A striking change has been found to occur
as this temperature passes through a critical region

around 1900 °C (Blackman, Saunders & Ubbelohde,
1961). Carbons prepared from methane below this
temperature have low bulk densities, show only
a comparatively small degree of preferred orientation
and contain appreciable amounts of residual hydrogen.
Deposition at higher temperatures results in carbons
with bulk densities and other properties which tend
towards those of perfect graphite. It seems probable
that, at about 1900 °C, the rates of thermal annealing
processes become of the same order as the rates of
deposition of carbon, thus causing defect structures
to be removed as rapidly as fresh deposits are laid
down.

The influence of the starting material from which
carbons are formed is, however, much less clear.
Comparison of the carbonaceous deposits produced by
pyrolysis of some hydrocarbons and chlorohydro-
carbons shows that the more highly chlorinated
compounds give rise to carbons in which the crystallites
are smaller and the preferred orientation is less
marked than in those derived from compounds con-
taining little or no chlorine (Cullis, Manton, Thomas



