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A major revision of the direct methods of phase determination is undertaken in order to extend 
the domain of validity of the methods to those structures having atoms with rationally dependent 
coordinates. The new formulation, strongly dependent on a critical analysis of the nature of the 
interactions which may occur among Patterson peaks, has the additional advantage that it is 
capable of using partial or complete a priori information concerning molecular structure. 

1. In troduct ion  

The method of solving crystal structures based on 
the direct determination of the phases of the structure 
factors had its serious beginnings only about a dozen 
years ago. Yet its deve],opment has been so vigorous 
that  it has already achieved several notable successes 
(e.g. Christ & Clark, 1956; Karle, Hauptman, Karle 
& Wing, 1958; Hauptman, Karle & Karle, 1960). 
The most remarkable aspect of these applications of 
the direct method, however, does not appear to have 
been sufficiently stressed. This is simply that, in 
contrast to most other methods of crystal structure 
determination, no a priori knowledge of molecular 
structure is employed by the direct methods. The fact 
that  the direct approach is not dependent on a 
previous knowledge of molecular structure is of course 
an advantage of the method when such previous 
knowledge is not available. However, in the case 
that  such knowledge does exist, it is to be considered 
a weakness of the direct method that  it is unable 
to utilize this information. In view of the fact that  
complete, or even partial, knowledge of the molecular 
structure would reduce substantially the number of 
unknown parameters required to fix the crystal 
structure, it is surely to be expected that  the ability 
to make use of such a priori structural information 
would enhance the power of the method. 

The direct method has been limited too by the fact 
that, for their exact validity, most of the phase 
determining formulas require that  a special type 
of rational dependence among atomic coordinates be 
not present. Owing to the symmetries which seem to 
occur all too frequently in real crystals, this limitation 
has proved to be much more serious than originally 
expected, particularly in the non-centrosymmetric 
space groups. Although it has been found possible 
to surmount this difficulty for some of the special 
relationships by means of the so-called renormaliza- 
tion of structure factors (Hauptman & Karle, 1959c), 
it has become increasingly clear that  what is called 
for is nothing less than a major revision of the whole 

formalism of the direct methods. I t  is the purpose 
of this paper to carry out such a revision. 

Instead of avoiding the annoying question of 
rational dependence of atomic coordinates, it is 
assumed from the outset that  the kind of rational 
dependence which causes trouble may in fact be 
present. By a critical re-examination of the earlier 
methods, coupled with a careful study of the nature 
of the interactions which may exist among Patterson 
peaks, it is shown how the formalism is to be modified 
in order to accommodate the existing rational depen- 
dence, if any. This more general point of view has 
the additional advantage that  it makes transparent 
the manner in which previous knowledge of molecular 
structure is to be used. Even if only partial information 
concerning the molecular structure is available, the 
new formalism is capable of utilizing it. Naturally, 
however, the more complete the a priori knowledge 
of the molecular structure the more accurate the 
final phase determination will be. 

A device often employed in this paper is to compute 
expected values of different random variables and 
to equate two expected values if the corresponding 
probability distributions are approximately the same. 
This technique naturally introduces certain errors into 
the calculations the magnitudes of which it would 
be desirable to estimate. However, a detailed study 
of the errors involved in the final formulas must be 
postponed in order to keep the present treatment 
within reasonable bounds. Since the present formula- 
tion includes as special cases those in which no rational 
dependence exists and no previous knowledge of 
molecular structure is available, it is possible to 
specialize some of our formulas suitably so that  
comparison with existing theory may be made. 
There are four points at which such contacts with 
earlier, known results are here made. In every case 
the agreement with the exact formulas is acceptable, 
the errors being of the order of 1/VN or less, where 
/V is the number of atoms in the unit cell. 

In this paper the final formulas express the mag- 
nitudes of certain linear combinations of the phases, 
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the so-called structure invariants, in terms of the 
observed magnitudes of the structure factors. There 
remains the problem of evaluating the individual 
phases from the structure invariants. How this is 
to be done for the centrosymmetric space groups has 
already been spelled out in detail in an earlier series 
of papers (Karle & Hauptman, 1959a, b, 1960, 1961; 
Hauptman & Karle, 1959a, b, 1960). These procedures 
have been worked out also for certain of the non- 
centrosymmetric space groups (Karle & Hauptman, 
1956, 1957). However, complete details for all the 
non-centrosymmetric space groups will be published 
at a later date. 

In § 2 we give a formula for the average value of 
exp { 2 ~ i ( h . r + h ' . r ' ) } .  This result is of fundamental 
importance for this paper. However, owing to the 
length of the analysis, the proof is omitted.* 

ROLE OF MOLECULAR STRUCTURE IN DIRECT DETERMINATION OF PHASE 

have already been defined. With this notation we 
have 

2. The average value of exp ( 2 ~ / ( h . r + h '  . r ' ) }  

Debye (1915) obtained the average value of exp(2~ih, r) 
where h is a fixed vector, the magnitude of the vector 
r is fixed, and all orientations of r are equally prob- 
able. He found that  

sin 2reqr 
<exp (27dh.r)} = 27cqr- ' (2-1) 

where q= [hi is the magnitude of h and r =  [r I is the 
magnitude of r. This result proved to be of basic 
importance for the interpretation of the scattering 
of electrons by gas molecules. We note that  in Debye's 
application of (2.1) the vector r is identified with 
an interatomic vector rz" which is assumed to be 
randomly oriented. 

For our purposes it turns out to be necessary to 
average, not over all orientations of an interatomic 
vector rz', but instead over all orientations of an 
interatomic triangle r,~, r~Q, rQ, where r,~ is the vector 
joining atom /~ to atom v, etc. However, except for 
its position and orientation in space, such a triangle 
is determined by the magnitudes of any two of its 
sides and the angle between them. In this way we 
are led to consider a generalization of (2-1). Assume 
that the vectors h and h' are given. The magnitudes 
r and r' of the vectors r and r' respectively, as well 
as the ~ngle ~r between r and r ' ,  are also specified, 
We imagine that  all orientations of the triangle 
determined by r, r', and qr are equally probable and 
we seek, under these conditions, the average value of 
exp { 2 ~ i ( h . r + h ' . r ' ) } .  The final result is a function, 
which we shall denote by B(z,  t), of two parameters 
z and t each of which is in turn expressible in terms 
of the six known quantities q, q', q:q, r, r', cp~, where 
q and q' are the magnitudes of h and h' respectively, 
~q is the angle between h and h', and r, r', and ~ 

* This analysis will appear in a forthcoming issue of 
Z. KristaUogr. (1965). 

THEOREM 2"1. 

<exp {2~i(h . r  + h ' . r ' ) } } = B ( z ,  t) 

= 2z , ,=oini~J½(4"+l)(z) '  (2-2) 

where 

z=27el/(q2re+ 2qrq'r ' cos ~rq cos cfr+q'2r '2) , (2-3) 

t = ~qrq'r' sin ~0q sin ~r (2"4) 
V (q2r 2 + 2qrq' r' cos ~q cos q~r + q'2r'2) ' 

and J½(,,+l)(z) is the Bessel function of the first kind. 
We note first that  the same result is obtained 

if r and r '  are replaced by - r  and - r '  respectively. 
Hence also 

( c o s 2 ~ ( h . r + h ' . r ' ) > = B ( z , t )  . (2.5) 

Next we observe that  in the special case that  
~rq = 0 or ~ or that  ~r = 0 or 7e, then t = 0, and, in view of 

J½(z)= ]/(2/(~z)) sin z,  (2.6) 

equation (2.2) reduces to (sin z)/z, i.e. to Debye's 
result (2-1), as it should. 

We remark finally that, since the pairs (h, h') 
and ( r , r ' )  occur symmetrically in Theorem 2.1, 
we may interchange their roles. Hence Theorem 2.1 
is valid also in the case that  the vectors r and r '  
are fixed and the average is taken over all orientations 
in reciprocal space of the triangle with sides q, q' 
and with included angle ~q. We shall make important 
use of this observation in the sequel. 

From (2.3) and (2.4) it follows easily that  

z(z +_ 4t) > 0 (2.7) 
whence 

It] <_ ¼z. (2.8) 

Since B(z,  t) is an even function of t, B(z,  t) need be 
computed therefore only in the range 

0 _< t _ ¼z. (2-9) 

In order to apply the methods described in this 
paper, it is necessary to have a table of values of 
the function B(z,  t). Table 1 gives the values of this 
function for z in the range 0_<z_<40 and for t 
satisfying (2.9) approximately. If it should prove 
necessary, a more extensive table will be published 
at a future date. Inspection of Table 1 shows that, 
in the range defined by (2.9), the magnitude of no 
entry exceeds unity, in agreement with the inter- 
pretation of the function B(z,  t) as an average of the 
cosine. I t  is of some interest, however, that  outside 
the range defined by (2.9), computation shows that  
B(z, t) increases with extreme rapidity. For future 
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Table 1. The function B(z, t) defined by equation (2.2), where z and t are given by (2.3) and (2.4) 
T h e  e n t r i e s  a r e  t h e  v a l u e s  o f  1 0  a x B(z, t) 

0.0 i0000 ;7~+14~ -91 +28 -i07[ -l~ +12.: +120 +17 -65 -70 -27 +13 +~0 +5 -4 22.0 
0.2 +9933 +9935 +4125 -172 +73i -98 -33 +li& +~5 +37 -90 -13~ -85 +10 :+i01 +198 +177 21.6 
0.4 +973~ +9740 +9168 -11/ +83 +13 -~ +8; +145 +~2 -i00 -178 -133 +6 :+168 +291 +335 21.2 
0.6 ÷9411 +94eC 17899 +32~ +~a +89 -31 +3.~ +118 +59 -9~ -194 -160 ~0 i+?.11 ~382 +447 20.8 
0.8 +8967 +8983 31788.1495 -36 +149 -1] -2~ +67 +55 -69 -178 -162 -6!+221 +415 +~90 20.4 
1.0 +8415 +8440 +851~ +3992 -95 +170 +161 -77 -i +41 -32 -131 -138 -/2 ~196 +382 +4~6 eO.O 
1.2 *7767 ~78021+7906 +8408 -13 +133 +55' -113 -73 +17 *12 -99 -90 -16 ~137 +287 +348 19.6 
1.kI+7039 ÷7084 +7221 19802 +~1 +39 +87 -124 -135 -13 +5~ +25 -24 -18 +54 *141 +179 19.2 
1.61 +6247 +6304 +6474 27271 +1921 -86 +96 -106 -176 -4~ ~8 +110 +~8 -17 -~ -3~ -26 18.8 
1.8 +5~i0 +5478 +568] +6026 +3724 -171 +69 -61 -IS3 -71 +107 +179 +117 -13 -135 -211 -23618.~ 
2,0 +h.51,6 +4626 +486: +926~ +7593 -91 +i -0 -154 -88 +106 ~ +169 -6 -210 -362 -417 18.0 
2.2 +3675 +3765 +~03~ +4;*9;: 13819 +346 -98 +59 -89 -89 +86 +227 +196 '+3 -25~ -461 -93917.6 
2.4 +2814 +2914;+321~ +372( 23182 ÷i~07 -19~ +98 4.0 -71 +49 +193 +192 +12 -2.58 -&90 -580 17.2 

2.6 +1983 +2091 *24171 +2966 +3747 ~3437 -215 +i00 +98 ! -36 +i +125 +155 '0"20 -221 -~AI -92816.8 
2,8 +-1.196 +1311 +1698 +2243 +3078 ~5893 -52 +98 +181 ÷13 -48 *30 +90 +251-145 -318 -389 i16.4 
3.0 +470 +990 +952 +1564 +2439 [2130 +455 -19 +~°9 +68 -88 -74 +6 +26-42. -137 -18016.0 
3.2 -182 -60 +311 +939 +1842 L9784 ~1916 -93 +~3 +118 -112 -172 -84 +23 +74 +76 +6915.6 

3.4 -752 -629 -256 +379 +1295 +2920 +3386 -98 +1.56 +190 -i/2:-244-166 +15 +1~4 +287 +32015.2 
3.6-]229-1108 -7~0 -ill *803 +2033 ~6357 +69 +34 +152 -89 -277-~25i +3 +269 +463 +533114.8 
3.8-1610-1493-1136 -523 +372 +158810746 +547 -113 +117 -45 -261-250 -i0 +31~ +573! +671!14.4 
4.0 -1892 -1781 -1442 -857 +5 +1188 ~6866 +1508 -233 +42 +i0 -196 -233 -24 +310 +597i +70814.0 

4,2 -2079 -1972 -1657 -1110 -~95 +835 +2346 +31~8 -290 -64 +63 -90 -175 -35 +29~ +~24 +63213.6 
~.~ -2163 -2070 :-1784 -1283 -529 +932 +1972 +.5672 -62-183 +i00 "+40 -81 -kl +192 +361 *4~913.2 
4.6 -2160 -2079 -1827 -I~81 -_~ +2~7 +1627 +9282 +k~O -277~. +~ +iy2+2~1 +~9 -40.31 -128+18 +128_140 +181.13412.812.~ 
4.8 I-E975:-2007 -1793 -ii+09 +71 +1314 14151 +14121 -3~ 

5.C -191~ -186 -169( -137~ -86] -9( +i03~ +262~ +2957 -197 +23 +342 +29815 -262 -404 -~4712.0 
9.2 -1695 -165 c . -1926 -]27 -86"~ -20( +78 +223? +9202 -+ll 5 -54 +337 +325 -+8 -361 -619 -709 i1.6 
5.& -1431 -1405:-1311 -I13 ~, -81( -281 +96~ +1858 +82;~I +7]2 -120 +261 *3~0 +33 -405 -748 -87& 11.2 
5.~ -1127-iii~ -107( -96] -738 -32~ +375 +1510 12131 *1671 -130 +119 +293 +56 -385 -763 -908 10.8 

5.6 -801 -803 -798 -757 -628 -33( +22~ +1188 +2736 +3063 -30 -66 +186 +73 -296 -653 -796 10.4 
6.0 -466 -480 -513 -535 -I,96 -32] +961 *894 +~54 +4943i +246 -253 +27 +78 -15~i-426 -54410.0 
6.2 -134 -159 -226 -307 -391 -28' -5 +629 +1800 +7343 +765 -393-159 +67 +35-io9 -182 9.6 
6.4 +18~ +II~7 +90 -81 -199 -233 -81 +394.+1378 i0265:+!~7 -~a~-343 +39 +231 +255 +242 9.2 
6.6 +~,72 +~9 +308 +134 -~9 -171 -136 +191 +99~+2514 +2760 -28~-486 .-6 +~04*609 +665 8.8 
6.8 +727 +6~8 +537 +33o *95 .-i03 -171 +20 *650 +1960 +4311 +7~-549 -621 +~ +899 +i0178..~ 
7,0 *939 *~5 +732 +500 *225 -33 -190 -120 +349 +1454 +623~ +703-492-/21 +559 +1o61 ~1237 8.0 
7.2 -1102 +1o47 +887 *640 +338 *34 -19~ -229 +93 +1oo3 +8~981+1620 -2861-171 +498 ~IQ6& ,12747.6 

26.8 

0.0 -177 -317 -403 -h23 -377 -~74 -132 +27 +176 4293 +361 +371 
0.4 -143 -263 -339 -359 -323 -237. -118 +16 +143 +2~ +304 +315 
0.8 -61 -130 -176 -193 -179 -137 -76 -4 +66 +123 +159 +170 
1.2 +13 +Ii +7 +3 -2 -6 -9 ~i0 -i0 -8 -5 -I 
1.6 +34 +87 +124 +140 +134 +107 +64 +]2 -~0 -84 -113 ~123 
2.0 +3 +73 +128 +161 +167 +i~6 +103 +4~ -20 -79 -123 -i~6 
2. ~- -30 +10 +46 +74 +89 +88 +73 +47 +13 -~2 -53 -74 
2.8 -4 -22 -35 -41 -~0 -32 -~0 -5 +9 +21 +29 +31 

3.2 +75 +19 -37 -83 _11~ _123 -I/2 -8~ -39 +8 +52 +85 
3.6 +107 +72 +24 -28 -72 -103 -114 -104 -76 -35 +11 +53 
4.0 +3 +19 +27 +27 +19 +5 -9 -22 -29 -29 -92 -ii 
4.~ -126 -115 -81 -3~ +16 +57 +83 +91 +80 +55 +22 -12 

4.8 -32 -82 -108 -103 -71 -21 +33 +77 +104 +i07 +88 +50 
5.2 ~6 +65 +75 +91 +14 -18 -34 -31 -15 +8 +28 +38 
~.6 +293 -89 -98 +8 +i00 +132 +107 +47 -19 -69 -92 -87 
6.0 20309 10165 +4/~6 +i979 +33~ -9~ -75 +4 +59 +59 +17 -37 
6.4 75358 43168 -~3041 1]/86 +47~0 +1554 +249 -124 -116 -16 
6.8 89416 ~0012 26003 12256 +4999 +i~7 

~7.2 27.6 28.0 28.g 28.8 29.2 29.6 30.0 30.4 30.8 31.2 31.6 
0.0 +323 +226 +97 -44 -174 -274 -328 -329 -280 -188 -69 +58 
0.4 +276 +196 +87 -32 -143 -229 -276 -280 -239 -162 -62 +45 
0.8 +153 +113 +57 -7 -68 -117 -i46 -151 -133 -94 -42 +16 
1.2 +2 +5 +7 +8 +7 +6 +3 4-0 -3 -5 -6 -6 

1.6 -i14 -87 -48 -2 +43 ~80 +103 +110 +98 .+72 +35 -6 
2.0 -145 -121 -79 -25 +31 +81 +116 +132 +127 +i01 +61 +ii 
2.4 -82 -77 -59 -32 -I +~0 +55 +71 +75 *66 +47 +21 
2.8 +28 +21 +ii -O -Ii -19 -23 -24 -20 -i~ -6 +3 

3.2 +103 +103 +86 +96 +17 -23 -97 -82 -92 -86 -67 -38 
3.6 +86 +i02 +i01 +82 +50 +i0 -31 -65 -8~ -95 -86 -63 
4.0 +4 +18 +28 +33 +31 +23 +ii -~ -19 -29 -35 -34 
4.4 -41 -60 -67 -61 -4~ -el +4 +~6 +43 +51 +49 +39 

4.8 +4 -41 -77 -96 -96 -78 -~6 -7 +33 +65 +84 +87 
5.2 +37 +24 +3 -20 -39 -90 -49 -37 -16 +8 +31 +~ 
5.6 -61 ~24 +13 +41 +55 +~ +~ +22 +0 -18 -30 -33 
6.0 -79 -92 -74 -34 +14 +58 +85 +90 +73 +41 +i -37 
6.4 +54 +67 +40 +2 -25 -32 -19 +5 +28 +4~ +41 +26 
6.8 +259 -78 -43 +57 +156 +89 +34 -25 -65 -75 -59 -~9 
7.2 29434 13940 ~9385 ~1668 +276 -75 -51 +26 +51 +22 -29 -67 
7.6 ~926 ]3197 ~48&8 +9692 +1655 +205 -i16 -63 +30 

8.0 

0.0 +172 +297 +300 ÷294 +243 +156 +~6 -69 -170 -243 -275 

0.8 +70 +136 +116 +7d +29 -23 -71 -106 - 
1.2 -6 -4 -2 ~O +3 +4 +5 ",5 +4 +3 +i. 
1.6 -~ _~g _ ~  -~ +_~ :~  
2.0 -3~ :~I ~ :~ :~ +~ - - +104 

- +8 -+~2 2.4 -35 -~ -67 -~ .7 -38 -~_~ +14 
2.8 +ii +17 +19 +19 +15 +i0 +3 -i0 -~ 

+77 +3 +~ -36 3.6 -30 +7 ~ +~2 +24 +89 -~ +7c +47 
4.0 -27 .!'~n -+~ +2~ +35 +30 +20 
4.4 +23 -+1~ -3 - ~  -3~ -25 -az +4 +~ 
4.8 +,9 +16 -19 -~B -70 : g  -72 : g  -~ +~ 
9-2 ~ +92 +38 +17 -31 -57 - -22 
~:0 ~ -28 -18 -6 ~ +-i~ +~ +~ :~ ~ ~ -8 

-65 -77 -73 -59 +35 +45 

7.2 -~ -+~ +_~o +42 -2~ -~ 
7,6 +69 +~/~ +5 --~4 -28 -12 +14 +34 +42 +32 
8.0 +23~ -66 ~ +7~ +82 -44 -14 8.4 ~7~ ~7917 +6 +:~4 + ~  t ~  : ~  -~ -63 +35 +3~ -11 -51 
8.8 ~7232 t9604 +6887 +1791 +179 =i~ -~ 
9.~ : 5~971 

36.~ 36.8 37.2 ]7.6 .~8.0 38.4 38.8 ~9.2 39.6 4O.o 
0.0 -265 -;_I~ _129 -~6 ,78 +16~. +~3 Z. +25~ +239 +186 

0.4 - z ~  -18~ -"~:~ :=5 +63 +'-~ +1o21 +829 Ol.2.8 - ~  -1.~ "~ +:~ "~ . . . .  +:93 +~+~15 +~+~3 +1~ 
1.6  +88 , ,  - ,  .82 _66 
2.0 +no i ~  +34 -8 -~g -79 -gs -1co -87 
2.4 ~63 : +~ +3o +6 -~8 -~ ;.~ ;~  .5 
2.8 -15 -12 -i .-5 *10 +.. +9 

.70 .76-. 9 
-21 -31 -35 -33 +32 

4.~ +28 +32 +31 +25 +15 +3 -9 -19 -25 -27 
4.8 +33 ~ ~-  ~ +57 ~ ~1o -17 :~ :~ 
5.2 +2 ~25 +~ +5~ +55 +29 +7 - 

~'0 ~. +22"'~ -~ :~ _~ ~1 -~ +'-° +~ +-~ +18 
6.. +~ +~2 ~ _~0 -~ ,_~ .~  :~  -32 -8 
6.8 +~ +14 -2 -ll -2i -19 
7.2 -,~ " ~'~ -17 +~ +29 +~i +~/~ +38. +24 
7.6 -17 -UZ -54 -52 -37 -].3 415 +39 +54 +57 
8.0 +14 +~9 +~ +19 +~ -lO :~  -16 _~ _.~ 
8.~ -63 - +35 +59 +63 +20 
8.8 +54 ".~ +17 -17 -&7 -12 +~3 633 +37 +23 
9.2 +1876 +2_10 -56 +18 471 44/3 -7 -49 -58 -39 

9.6 
i0.0 

appl icat ion we observe tha t  B(z, t) approaches  zero The central  t h e m e  in this  sect ion is the  formula  
with  increasing z, i.e., in v iew of (2.3), wi th  increasing ( H a u p t m a n  & Karle ,  1955) 
r or r' or q or q'. 

]Ehl~--l=lY<(IEki2--1)(IEh+k]2--1))k, (3.1) 
3. T h e  s t r u c t u r e  i n v a r i a n t s  [/i:l 2 - 1  

In  this  sect ion we introduce  the  basic def ini t ions  val id  for the  case of AT ident ical  a toms  per uni t  cell  
and nota t ion  and prove some prel iminary results  and under  the  restr ict ion t h a t  no two  interatomic  
which  wil l  be needed  later,  vectors  coincide,  i.e. tha t  the  Pat terson  funct ion  
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contain no overlapping peaks.* The lat ter  requirement 
rules out, for example, the space group P1, for which 
the correct formula is (Cochran, 1954) 

[Eh[~.--1 ~ (N/2)<(IEk[2--1)(lE,,+,,[z--1)>k, (3.2) 

subject now to the restriction that ,  except for sym- 
metry-related vectors, no two interatomic vectors 
coincide. The symbol ~ in (3.2) replaces the exact 
equali ty of (3.1) since, for simplicity, a term of the 
order of 1/~//V has been suppressed in (3.2). A major 
aim of this section is to exhibit (3-1) and (3.2) as 
special cases of a single, more general formula, valid, 
at least approximately, in the case of unequal atoms 
and, of greater significance, in the case tha t  arbi t rary  
numbers of interatomic vectors coincide. In particular, 
our main formula (equation (3.20)), in contrast to 
(3.1) and (3.2), is space-group independent, contains 
(3.1) and (3.2) as special cases, and clearly shows the 
origin of the discrepancy between (3.1) and (3.2). 

As usual, in the following definitions, r~ is the 
position vector of the j t h  atom, the atomic number 
of which is Z¢, and Z r is the number of atoms in 
the unit  cell. 

N 
DEF. 3"1. an = ~ Z ~ .  

i=1 
N 

DEF. 3-2. E k = (1/a~/~)~Z~ exp (2~rik.r~). 
1"=1 

D~F. 3.3. r ~  = r j - -  rx. 

DEF. 3.4. If j # k  we define Z~-~ by means of 

Z ~  = Z~Z~ . 

We list next, as immediate consequences of Def. 
3.1-3.4, the following formulas" 

iV 
IEkl2--1 = (1/a~.) ~ Z z '  exp (2~ ik . r z . ) ;  (3.3) 

1 

<IE,12- t > k = 0 ;  (3"4) 

Eo = a~/ a~/~; (3.5) 
N 

Zz'  = a~; (3.6) 
;,f 
1 

N 
X g~, = o-~- o'~; (~.7) 
x 

* I t  should be emphasized tha t ,  under  the  condit ions 
s ta ted ,  (3-1) has exact  va l id i ty  provided t h a t  the  average on 
the  r ight  is t aken  over all vectors  k in reciprocal space. 
I n  the  a t t e m p t  to confirm (3.1) wi th  exper imenta l  d a t a  one 
is faced wi th  the  complicat ion in t roduced  by  the  necessi ty 
of averaging over only  a f inite sample f rom the  infinite 
popula t ion  of vectors k. One approach to the  problem of 
estin~ating the errors arising f rom such finite sampling has 
a l ready  been described by  Vaughan  (1959). The fur ther  con- 
s iderat ion of this  problem is outside the  scope of this  paper.  
Similar remarks  app ly  to § 5. 

~r 

2:z~i, = o~; 
/,~" 
1 

N 
z~i. = o~ -  a~. 

j.~., 
1 

(3-8) 

(3-9) 

:DEF. 3"5. If j # k we define w~, the 'weight' of the 
vector r¢~, by means of 

v,¢s-= ~ Zj'A-' , (3"10) 
i ' . k '  

where the summation is extended over all pairs 
(j ' , k') such that  

r3"~ + rj,k, = 0 .  (3-11) 

If j = k  we define wjk to be zero. 

DEF. 3.6. The symbol e3"~ is defined by means of 

ej~ = w~k/Zj~ (3.12) 

if j . k .  If j =  k, sj~ is defined to be zero. 
Since the equation 

r~k + rk~- = 0 (3.13) 

implies tha t  (3.11) always has at least the one solution 
j ' = k ,  k '= j ,  and since Z~k=Z;cj, it follows tha t  

ejk >_ 1 if j # k .  (3.14) 

Again, in view of rj~ = - r k l ,  (3.11) implies 
r~j+r~,~,=0, and conversely. Hence, in view of 
Z ~ = Z k l ,  (3.1), and (3.12), 

w~=wk~, ej~= s~j. (3.15) 

THEOREM 3"1. For arbi t rary  structures 

<([Ekl ~ -  1) (IEh+k] 2 -  1)>k 
N 

( l / ~ )  2 : 2  = Zi~ejk exp (27dh. rj~). 

1 

Proof" Appendix I. 

(3.16) 

COROLLARY. For a structure consisting of N identical 
atoms sj~ may be interpreted as the number of vectors 
ri.k. satisfying (3.11), and we have 

< ( [ E k l  2 - -  1 ) (IEh+kl ~ -- 1) >k 
N 

= (1/N 2) • e:~ exp (2~ih.  rj~) . (3.17) 

1 

I t  is an important  property of the e~k tha t  their 
(weighted) average is the average of (IEkle--1) 2. 
In fact, setting h = 0  in theorem 3.1, we obtain 

THEOREM 3"2. For arbi t rary structures 
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AT 

N ~,k 

(([Ek[2_ 1)2> k _-- (1/0.2) .~,Z2.kS] k _ 1 iv 

Lk  
1 

(3.18) 

Theorem 3.3 now reduces to 

IEhl ~ -  1 ~ 2-- (30-J~) <(tEkl~-- 1)(IEh+kI~-- 1)>k, 
(3.27) 

or, for the case of ~V identical  atoms, to 

COROLLARY. For  a s t ructure  consisting of N identical  
a toms we have 

N 

((IEkl ~ -  1)~>k = (1/N ~) --Y e ~ .  (3"19) 
],k 

1 

The main resul t  of this section is contained in 

THEOREM 3"3. For a rb i t r a ry  s t ructures  

(0-~ - 1) <([Eu 12-1) (IEh+kl2-- 1)}k 
] E h l 2 - 1  \ ~  (([Ekle-- l)e}k 

Proof" Appendix  II.  

(3.20) 

COROLLARY. For a s t ruc ture  consisting of N identical 
a toms we have 

N - 1  
[Ehl 2 -  1 ~ ( ( iEkle_  1)2,~k<(IEkl2--/1) (IEh+kl 2 -  1 ) )  k . 

(3.21) 

N - 1  
IEh[ 2 - 1  ~ 2-~3/--~. <([Ekl2-- 1)([Eh+~l 2 -  1)>k, (3.28) 

i.e., except for te rms of the order of 1//V, to equat ion 
(3.2). 

Comparison of equat ions (3.18), (3.22) and (3.26) 
clearly shows tha t  the presence of coincident inter-  
atomic vectors or, what  is the  same thing, overlap 
in the Pa t te r son  funct ion results  in an increase in the 
average value of (]Ekl2--1) e. As has a l ready  been 
observed, the occurrence of such coincidences spoils 
the exact  va l id i ty  of (3.1), bu t  the more general  
formula (3.20) is not  adversely  affected. I t  should be 
pointed out that ,  a l though the occurrence of coincident 
in tera tomic  vectors affects the average value of 
([Ek[ ~ -  1) 2, the average value of IEk[ 2 is always uni ty .  
Hence the usual  method (e.g. Karle,  H a u p t m a n  & 
Christ, 1958) for placing the [Ek[ 2 or an absolute 
scale remains valid. 

We conclude this section by  showing how our 
formulas are specialized to yield the known results  
(3.1) and  (3.2). 

We assume first  t h a t  no two in tera tomic  vectors 
coincide. Then sj~= 1 for j # k  and, in view of (3.9), 
equat ions (3.18) and (3.19) reduce to 

<(IEkl 2 -- 1 )2>k = 1 - 0-4/0-~ (3.22) 
and 

<(]Ekl 2-  1)2}k= 1 - 1 I N  (3.23) 

respectively.  Hence equations (3.20) and (3.21) now 
become 

(0-~/0-~)- 1 i~_ [Eh[2--1 ~ 1- -  ( 0-4/ 0-9) " ( ( I E k [ ~ - l ) ( [ E h + ~ ' 2  1)}k 
(3.24) 

and  
IEhlU--1 ~ N(( lSkr- - l ) ( [Eh÷~12--1)}k (3.25) 

respectively,  the second of which is the  exact  formula 
(3.1). 

Final ly ,  we assume tha t  the space group is P1 and 
tha t ,  except for symmet ry - re la t ed  vectors, no two 
in tera tomic  vectors coincide. Then, if j # k ,  e j~=2 
except for the case t h a t  r~ = - r z  when e~ = 1. 

Theorem 3.2 now becomes 

N iV 

<(IEkl2-- 1)~}k = (2/0-~1 2 Z~k -- (1/ 0-21 ~Z~. 
j ,~  j=l 

1 

= (2/0-~1(0-~- 0-41- 0-4/0-2 = 2 -  30-4/0-~. (3.26) 

4.  T h e  t h r e e  k i n d s  of  i n t e r a c t i o n  

DEF. 4"1. The nota t ion  # # v # ~  shall mean tha t  
t t # v ,  v # ~ ,  and ~ # t t .  

DEF. 4"2. A tr iple of in tera tomic  vectors (ri2, rj,k,, 
rj,,k,,), wi th  j # k, j '  # k', j "  # k", is said to const i tu te  
an in teract ion if t hey  sat isfy the equat ion 

r~k + rj,~, + r~, ,~,, = 0 .  (4.1) 

Permut ing  the vectors in an interaction,  or revers ing 
the order of each of the three pairs of subscr ipts  
yields, in general, twelve interact ions (six if two pairs  
of subscripts  coincide) which, however,  will be con- 
sidered to be the same interact ion.  

DEF. 4"3. Two interact ions are said to be equiva lent  
if the  three vectors const i tu t ing the f i rs t  in teract ion 
are equal, in some order,  to the three  vectors  
(or thei r  negatives) of the second interact ion.  In  
par t icular ,  any  in teract ion is equivalent  to itself. 

DEF. 4"4. An in terac t ion  is said to be a val id  
interact ion if, by  suitable a r rangement  of its elements,  
i t  m a y  be wr i t t en  in the form (r,,,, rye, rQ~). Thus the 
val id  interact ions are identified with the in tera tomic  
triangles,  including the degenerate  ones which arise 
when three a toms happen  to lie on the same s t ra igh t  
line. 

DEF. 4"5. An in terac t ion  is said to be an induced 
in teract ion if it  is equivalent  to a val id  interact ion.  
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In  particular every valid interaction is also an induced 
interaction. 

Evident ly  a structure contains induced interactions 
(other than  valid ones) if and only if certain inter- 
atomic vectors coincide. 

• ]123=2 since the valid interactions represented by 
(rt2, re3, r~l) and (r4s, rss, r64) are the only ones 
equivalent to the former. Similarly z]le4=~]i35=2. 
I t  follows that  sz2~= e~5 = 8 while s~4=4.  

DEF. 4"6. A chance interaction is one which is not 
an induced interaction (or a valid one). 

DEF. 4"7. The symbol Z,~o is defined by 

Z ~  = Z,,Z~Z~ (4.2) 
where /z =t= v # ~. 

D~F. 4"8. If /z # v # ~, the symbol ~],~ is defined to 
be the number of valid interactions equivalent to the 
valid .interaction (r,~, r~e, rq~,). 

Since every valid interaction is equivalent to itself 
i t  follows tha t  

~1,~> 1 if # # v # ~ .  (4.3) 

Evidently,  also, the value of ~],~o is unchanged under 
all permutations of the indices. 

DEF. 4"9. If # # V # ~ ,  the symbol s~,,,o is defined 
by means of 

e,~o = 2 s,,~ % %,,/~,,.~. (4.4) 

If any two or all three of #, v, ~ are equal, then s:,,'e 
is defined to be zero. 

5. The s t r uc tu r e  i nva r i an t s  ~ - ~  9~2-~ ~v a 

The central theme in this section is the formula 
(Karle & Hauptman,  1957; Vaughan, 1958) 

]E1E2E31 cos (91 + ~9.+ ~3) 
= (Na/2/2). <([Ek[ 2 - 1 )  ([Eht+k[2-- 1 ) (]E_ha+k[ 2 - 1  )>k 
+ (1/N~/2)([Et[~ + IE2[ 2 + ]EaI 2 -  2) ,  (5.1) 

in which we have written E~ for Ehi, 9i for the phase 
~hi of the normalized structure factor Ehi , i =  1, 2, 3, 
and where we have assumed (and shall assume 
throughout) that  

ht + he + h3 = 0 , (5.2) 

so that  91 + 92 + 93 is a structure invariant.  Equat ion 
(5.1) has exact validity if the structure consists of N 
identical atoms per unit cell and if the only inter- 
actions are valid ones. The lat ter  requirement rules 
out, for example, the space group P1, for which the 
correct formula is (Hauptman & Karle, 1957 ; Vaughan, 
1958) 

5 4 

6 

I 2 

:Fig. 1. Structure  consisting of six identical  a toms at  the 
vertices of a regular hexagon. 

The structure consisting of the vertices of a regular 
hexagon labeled as in Fig. 1 readily yields examples 
of the three kinds of interactions (Table 2). The 
three interactions listed in the second column are 
equivalent, in the same order, to the valid inter- 
actions shown in the first column. 

Table 2. Class~ficatlon of several interactions 
obtained from the structure of Fig. 1 
Valid Induced  Chance 

interact ions interact ions interact ions 

(rlu, r23, r31) (r12, r6s, r4G) (r12, r34, r56) 
(r12, 1"41, r24) (rz2, r15, r41) (r12, r54, r3G) 
(r13, 1"51, r35) (r62, r46, rls) (rl.~, rl_~, rse) 

If the atoms in the structure of Fig. 1 are identical, 
then evidently el~=sla--2 whereas ~14=1. Again, 

IEIE2E31 cos (91 + 92 + 93) 
(N3/2/8) • (([Ek]2-- 1) ([Ehl+k] e -  1) (IE_aa+k] 2 -  1)>k 

+ (1/NI/e)([E~I2 + ]E2[ ~ + IEale- 2),  (5"3) 

provided that ,  in each asymmetric unit, the only 
interactions which occur are valid ones. The symbol 
in (5.3) replaces the exact equality of (5.1) since, 
for simplicity, a term of the order of 1/VN has been 
suppressed in (5.3). A major aim of this section is to 
exhibit (5.1) and (5.3) as special cases of a single, 
more general fornmla, valid, at  least approximately, 
not only in the case that  the structure contains 
unequal atoms but, of much greater importance, 
in the case tha t  arbi t rary numbers of induced inter- 
actions are present, i.e. that  arbi t rary numbers of 
interatomic vectors coincide. In fact, our main 
formula (equation (5-12)), in contrast to (5.1) and (5-3), 
is space group independent, contains (5.1) and (5.3) 
as special cases, and clearly shows the origin of the 
discrepancy between (5.1) and (5.3). In § 6 and § 7 
we generalize the results of this section to the case 
that  chance interactions may also occur and, at  the 
same time, show how previous knowledge of molecular 
structure is to be used. 

We begin with the following result which we assume 
to be known (Hauptman & Karle, 1962, equation 
(2-3.7)) : 

T~EOREM 5"1. If h i +  h2+ h3=0,  then 
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IE1EeE~I cos (91 + 92+ 9a) 
N 

1/a~/2) ..~ Z~,~o cos 2z~(h~ . r~-  h~.r~e ) 
1~ 4: v * O 

1 

3 /2  +((ra/ae )(IEt iz+ IEeI~ ÷ IEa[~-2) . (5.4) 

DEF. 5"1. A structure is said to be determinate if 
i t  has no chance interactions. 

THEOREM 5"5. For determinate structures 

a~ - 3 at a2 + 2 aa 
IE1EeEalcos (91 + 9~ + 9a) ~ a~/e<(lEklZ_ 1)~>k 

× <([Ek[ 2 - 1 )  (IEh~+kl 2 - 1 )  (]E--hz+k] 2 -  1)>k 

+ ((rz/,:r~/2)(IExl~ + IEzI~ + IEzl2- 2) .  

Proof: Appendix IV. 

(5.12) 

THEOREM 5"2. For determinate structures 

<(IEkl ~ -  1) (IEh~+k[ z -  1) (IE_h~+k[ ~ -  1)>k 

(1/a~) 2; = Zt,~est,~e cos 2 :~(h l . r t , , -  h~.r,.~,) . (5.5) 
1~ :6 v :6 0 

1 

Proof" Appendix I I I .  

Jus t  as a suitable weighted average of the s~g was 
found to be equal to the average of ([Ek[2--1) 2 
(Theorem 3.2), so now we find that ,  for determinate 
structures, a weighted average of the s,, e is equal 
to the average of ([Ek[ 2 - 1 )  a. More precisely, we have 

THEOREM 5"3. For determinate structures 

N 
2 , 2; Z /~e/~,. o 

~V i.~, v, O 

<(]Ekl e 1)8>k (1/a~) Z Z 2  1 
- -  : - -  # v O E p v ~  = N 

P =I= V 96 Q 2 

i ~, v,  e 
1 

(5.6/ 
Proof: Set h i =  h~=0 in Theorem 5.2 and employ 

the fact tha t  s.,,,o=O if any two or all three indices 
coincide, as well as the identi ty 

N B ~ 

ZgZ~Ze= 2;  Z ~  e (5"7) a~ = 2 : - . u - ~ - e  
,u, v, ~ I ~, v, e 

1 1 

Using Def. 3.1, a straightforward computation yields 

THEOREM 5"4. 

2." Z~.. e = a~ - 3 a, a2 + 2 a~, 
/ t * v , e  

1 
iv  

"-'u'-'~ = a t a 2 -  (:r8 . 
# ::l: v 

1 

(5.s) 

(5.9) 

C O R O L L A R Y .  

2v 

2 ;  Z ~  e = (l~ - 3 a~ a4 + 2 a6 , 

1 
37 

.~  4 2 7,7, 
"-~u~ v -~- a 2  a 4  - -  a 6  I 

$ 

/t~:v 
1 

The main result of this section is given by 

(5.10) 

(5.111 

C O R O L L A R Y .  For determinate structures consisting 
of N identical atoms 

( N -  11(N-21 
[E1EeEa{ cos (91 + 92+ 9a) ~ ~.1/2 ( ( [Ski2  _ 1)3>k 

× (([Ek[ ~ -  1) (IEh,+k[ e -  1) ([E_h3+k[ z -  1)}k 

+ ( 1 / 2Vt/z) (]E1 ]z + ]ZelZ + IZ3r - 2) .  (5.13) 

We conclude'this section by showing how our main 
formula (5.12) is suitably specialized to yield the 
known results (5-1) and (5.3). 

We assume first tha t  no two interatomic vectors 
coincide and tha t  the structure is determinate. Then 
su~ = eye = %, = ~Tu,e = 1 while e/~e = 2 if # =4= v =4= Q. Next, 
in view of (5.10), (5.6) becomes 

<(]Eu[~-1)a>k = 2 (~a~--3a2~4+ 2a6) /a~ ,  (5"14) 

or, for the case of _h r identical atoms per unit  cell, 

2 ( N -  1) ( N - 2 )  
((IEkl2-- 1)a>k = N2 (5"15) 

Equat ion (5.12) now reduces to 

[EtE2E~ I cos (91+ 9e+ 9a) ~ 2(a~-3aeaa-t-2a6) 

× <([Wk[ 9'- 1) (JEhl+kl e -  1) (IE_h3+kl ~'- 1)>k 

+ (aa/a~/2)(IElI2 + [E~I2 + l E a r -  2) (5.16) 

or, for the case of N identical atoms pet' unit cell, 
to equation (5.1). 

Finally, we assume tha t  the space group is P1,  
that ,  except for symmetry  related vectors, no two 
interatomic vectors coincide, and tha t  the structure 
i s determinate. Now sz, = e~e = ee, = 2 if/z # v # ~ except 
tha t  if r , = - r ,  then s~,= 1, if r , = -  r e then e,e= 1, 
and if r e = - r ,  then %,=  1. Again, if # 4  v #  ~, then 
~7~,e= 2 so tha t  s~,,e= 8 unless r ~ = - r ,  or r ~ = -  r e or 
r0 = - r~ in which cases s,,q = 4. 

Now (5.6) becomes, in view of (5.101 and (5-111, 
N N 

<([Eul2--1)3}k= (S/a~) .,S Z,~,~-- Z~Z,, 
Iz ::t: v ::t: O I~ * v 

1 1 
_IV 

+ (12/a~) .X z~ 
i . t = l  

= (8/a~)(a~-- 3a2a4 + 2a6) 

- (12/41  (a~a~-  a.) + (12/a~)a. 

= 8--  (36a4/a~) + (40a6/a~) (5.171 
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or, for the case of /V identical  a toms per uni t  cell, 

<(IEkIe--1)~}k=4(N--2)(2N--5)/N% (5.18) 

Equa t ion  (5.12) now reduces to 

d312 ~,.,,3 3o'z0"2 q- 2d3) 
IE~E~Ea] cos ( ~  + ~e + ~ )  ~ 4 ( 2 ~ - 9 3 e ~ 4  + 10~) 

x ( ( lEk l  ~ -  1) (IEhl+kl ~ -  1) ( IE ha+kl ~ -  1)> k 

+ (aa/a~)(IE~I~+ IE~I~+ lEvi ~ -  2) (5.19) 

or, for the case of N identical  atoms per uni t  cell, to 

IE~E~E~I cos ( ~ +  ~ +  ~ )  

N~/~(N-  1) 
4(2N-----------5) ((IEkl~-- 1)(iEhl+kl~-- 1) (}E--hz+k}~'-- 1)}k 

+ (1//V~z~)(IZ~[ ~ + IE~]~ + ]Z~]~- 2) ,  (5.20) 

i.e., except for te rms of the order of l /N,  to equat ion 
(5.3). 

Our discussion clearly shows how the presence of 
the induced interact ions results in an increase in the 
average value of (IEkl~--l) ~. 

6. A g e n e r a l i z a t i o n  

In  this section we extend the results  of § 5 to a rb i t r a ry  
s t ructures  and, at  the same time, show how the known 
features of the molecular s t ructure  m a y  be used. 
Since now we permi t  the  occurrence of chance inter- 
actions, equat ion (III-2) no longer implies (5.5). 
Instead,  by  averaging over all vectors k, (III.2) leads 
to 

( ( IEk l  2 -  1) (IEhl+kl 2 -  1) (]E_h3+k} 2 -  1 )>k 
:V 

-- 1 / ~  .~7 ~ 2 ~ ( h ~ .  h a r~0) - Z~,~e~,~ cos r , ~ -  . 

1 
+C(h~,  - ha) ,  (6.1) 

where 

C(h, h ' )=  (1/~).ZZ~Z~,~,Z~,,~,. 

× exp [ 2 ~ i ( h . r ~ +  h ' . r j ,~,)] ,  (6.2) 

and ~ means tha t  the sum is extended over all 
g 

indices, j , /c,  j ' , / d ,  j " , / c "  corresponding to the chance 
interactions.  (We observe tha t ,  in general, there 
will ~e ~welve contr ibutors  to the to ta l  sum corrc- 
sponding to each change interact ion since the elements 
of the tr iple (j, k), (j ' ,  k'), ( j" ,  k"), associated wi th  
the chance interact ion (r~,  r~,~,, r~,,~,,) ma y  be per- 
muted,  e.g. (j ' ,  lc'), (j, k), ( j" ,  k"), and the order of 
the elements of the three pairs in each such tr iple 
m a y  be s imul taneously  reversed, e.g. (k, j) ,  (k', j ' ) ,  
( k " , j " ) .  If however j = j '  and k=k ' ,  for example,  
then  only six contr ibutors to the to ta l  sum correspond 
to the interact ion.)  

Next  we employ Theorem 2.1 to replace 

exp [2~ i (h . r¢~+  h'.r~,~,)] by  its average value B(z, t) 
in order to obtain the following est imate  of C(h, h')" 

C(h, h')  ~ (1/a~),~Z~Z~,~,Z~,,~,,B(z, t ) .  (6.3) 
z 

We observe tha t  B(z, t) is given by  equat ion (2-2) 
while z and t are obtained from (2.3) and (2.4) respec- 
t ively.  The la t te r  equations require a knowledge of 
q, q', and ~q, which are known once the vectors  
h and h '  have been specified, as well as a knowledge 
of r=rik, r'=ri,k,, and q~. However,  rlk and r~,~, are 
the magni tudes  of the vectors r3"~ and ri,~, respect ively 
while ~r is the angle between these vectors. Thus one 
possible method of uti l izing the known features of 
the molecular s t ructure  immedia te ly  suggests itself:  
Use all the known chance interact ions (i.e. those 
triples (r~k, r~,~,, rj,,~,,) which are nei ther  val id nor 
induced interact ions but  which sat isfy rj~ + r~,~, + rj,,k,, 
= 0  and are such t ha t  the magni tudes  of r~ ,  r~,k,, r~,,~,, 
are known) to compute as m a n y  terms of (6.3) as 
possible. Na tura l ly  the more complete the  previous 
knowledge of molecular s t ructure  the more terms in 
(6-3) may  be computed and the be t ter  will the  resul t ing 
es t imate  of (6-3) approximate  the desired value of 
C(h, h ')  as given by  (6.2). We shall assume then  tha~ 
C(h, h') is known as a function of the vectors h and h' .  

We shall need a pre l iminary  theorem obtained by  
set t ing h l = h s = 0  in equations (6.1) and (6.3): 

THEOREM 6"1. For  a rb i t r a ry  structures,  

.V 
<(IEkl 2 -  1)3}k = (1/a~) __Y Z,,,os,ve2 +C(O, 0) (6"4) 

1 
where 

C(0, O) = (1/a~)~'Z~.Z~,~,Z~,,~.,, (6.5) 
z 

and • means tha t  the sum is to be t aken  over all 
z 

the chance interactions,  each such interact ion being 
counted twelve (or possibly six) t imes as a l ready 
explained. 

Comparison of equat ions (6.4) and (5-6) shows 
clearly how the presence of the chance interact ions 
increases the average value of (JEk[e--1) 3. 

Next,  re turning to equation (6.1) we find 

<([Ek[ e -- 1) (]Eh,+k] ~ -- 1 ) (]E-h3 -k] 2 -  1 )}k-- C(hl, -- ha) 

N 
(1/(y~) 2 2 Zpv~ spy9 

1 

"~ 2 2 ~ ( h l . r ,  _ ha.rv0)l Z~,,o e~ve cos 
/1. .¢~ 

1 x (6-6) 

2J 2 Z ~vo 81~v 0 

1 

~nd observe tha t  the expression in braces is the  
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average value of cos 2~r (h~ . r , : -  h~.r:q). However 
equation (IV.2), a consequence of Theorem 5.1 and 
therefore valid for arbi t rary  structures (determinate 
or not), yields another expression for the average value, 
with different weights, of cos2~(h~ . r , : -ha . ryq ) .  
Substi tut ing from (IV.2) into (6-6), and employing 
also (6.4) and (5.8), we find 

difficult to see how to employ equations (6.8) and (6-9) 
to cope with the problem arising from the occurrence 
of approximate chance interactions which one would 
expect, in view of the limited number of data  usually 
available from experiment, should somehow be taken 
into account. In  the next  section we show how to 
overcome these difficulties. 

<(IEkl 2 -  1) (IE,,r+ki 2 -- 1) (IE_ha+kl 2 -  1)}k-- C (h,, - ha) 

iV 
2 (1/a~) .,~ Z~,~q s~,q 

1 

a~/~ o-~ (I E112 + IE~.t 2 + lEvi 2 - 2) I 
_,~. IEiE2EaI cos ( ~  + ~2 + ~ )  - iv 

.Z Z~o ~ Z~Y° I 
1 1 

fa~ielE,E2Ea I cos (m~ + q~2+ q~a)-o'a(IE~l~ + IE212+ IEal2- 2)1 
{((IE,<I 2 -  1 ) 3 > k - -  C ( 0 ,  0)} 

al ~ - 3a~ a~ + 2~a - -  ~ " 
(6.7) 

Finally,  solving (6 .7 ) fo r  IEiE2E~ I c o s ( ~ l + ~ 2 + c ~ )  
we are led to the first main result of this paper: 

THEOREM 6.2. For arbi t rary  structures 

a ~ -  3a~a~ + 2 ~  
IE~E2E~I cos ( ~ + ~ + ~ )  ~ a~. x 

<(IEkl 2 -  1)( IEh,+kl  2 -  1)(IE_ha+kl 2 -  1 ) )k - -  O(hl, - ha) 
<(IEkl 2 -  1)~)k-- C(0, 0) 

+ (~i~1~-)(IE, I ~ + IE2I 2 + IE~I~:_ 2 ) .  

In view of Theorem 6-1 we also have the 

(6.8) 

COROLLARY. For arbitrary structures 

~ - 3 ~  + 2a~ 
IE~E2E~I cos (~:~ + ~2 + <p~) ~, ~ I2  

7. An a l t e rna t ive  

We introduce the notation 

r(h~, h2, hs)=(aa/a~/e)(IE~]~+IE212+IE~]2-2), (7.1) 

so tha t  r(h~, he, ha) is a known function (of the order 
1/~/N) of the three vectors h~, he, ha. Then, assuming 
as always tha t  h ~ + h e + h s = 0 ,  Theorem 5.1 may be 
wri t ten 

[E1EeE31 cos (~1 + ~= + ~3) 
.¥ 

(1/a~/2) ~ Z~q cos 27~(h~.r,,y- ha.rye) 
IXCV#O 

1 

+ r(h~, he, hs).  (7.2) 

We imagine tha t  hi, he, and  ha are fixed and write 
q ,= Ih,I, i =  1, 2, 3. Next,  replace the vectors h, in (7.2) 

<([Ek] 2 -  1)(IEhl+k[2--1)([E_h3+k[2--1)}k - C(hl,  --h3) by vectors k~, i = 1 ,  2, 3, where the ki are arbi t rary  
,v " . . . . . . . . . . . . . . . . . . . . . . . . . . .  vectors subject only to the condition I k~l = q~, i = 1, 2, 3 

(1I~I")  . X  * • Z~,,o~,,~, (whence kl + k2 + k3 = 0). We then average both sides 
/e4:u=b0 

1 

+ (~3/~P~/e) (IEll 2 + IE219 + lEvi 2 - 2) . (6.9) 

I t  is to be noted tha t  the expressions C(0, 0) and 

N 
2 (6.10) (1/a~I ~) 2: z.y~.y~,  

#4:v:l: Q 
1 

which occur in (6.8) and (6.9), may, since they are 
sums of positive terms, be accurately computed only 
if the complete molecular structure is known. If 
only partial  information concerning molecular struc- 
ture is available, then it  is possible only to estimate 
the sums (6.5) and (6.10) by computing those of their 
contributors which are known from the molecular 
structure. Thus equations (6.8) and (6.9), while an 
improvement over the analogous formula (5.12) when 
chance interactions are present, are still subject to 
error when, in practical application, the amount of 
previous structural  information is small. Again, it is 

of (7.2) over all such vectors kl, k2, k3 and observe 
tha t  this is equivalent to averaging over all orienta- 
tions in reciprocal space of the triangle whose sides 
are the vectors hi, h2, h3. We employ Theorem 2.1 
to replace <cos 2~ (k l .  r ,~-k3.ryQ))k by B(z, t) which, 
in view of (2.3) and (2.4), depends only on the mag- 
nitudes ql, q2, q8 of the vectors kl, k2, k3, assumed 
fixed over the present averaging process, as well as 
on the magnitudes of the interatomic vectors r,l~, ry e 
and the angle between them. Knowledge of the lat ter  
is equivalent to tha t  of the sides r~, r~Q, re, of the 
interatomic triangle r,, ,  ryQ, rQ,~. In order to empha- 
size this dependence we shall replace B(z, t) by 
B(ql, q2, q3; r , ,  r~q, rq~,). Thus we obtain 

<lEklEk2Ekal  COS (?9kl-t-  99k2-t- ~k3)>lki[_qi 
5" 

(1/a~/2) 2:  Zt, yqB(ql, q2, q3; %,  r~e, rc,/~ ) 
1 

+ R(ql, q2, q3) , (7"3) 
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in which we have wri t ten 

R(ql, qe, qs) = (r(kl ,  ks, ks))lkil=,~ (7.4) 

so that ,  in view of (7.1), R(q~, q~, qa) is a known func- 
t ion of q~, q% qa. 

Since B(q~, qe, qs; r~,~, r~e, rq~) depends in a known 
way on q~, q~, q~, r~, r,e, r.o,, the right hand side of (7.3) 
may be computed, for fixed q~, qe, q~, provided that  
(the sides of) all interatomic triangles (including the 
occasional degenerate triangles which arise when three 
atoms lie on the same straight line) are known. :Now 
k~owledge of some or all of the molecular structure 

implles ~ka~ a~ leas~ some o{ ~l~e ~m~ller in~er~t0mic 
triangles are known. Many or most of the larger 
interatomic triangles may not be known. However, 
as has already been pointed out, the value of the 
B function is relatively small for the larger interatomic 
triangles. Since the B function takes on negative as 
well as positive values, i t  follows that,  in general, 
we may obtain a valid estimate of the triple sum on 
the right hand side of (7.3) by including only those 
contributors for which the corresponding interatomic 
triangles are known. Natural ly the more complete 
our a priori knowledge of the molecular structure, 
the closer will this approximation be to the correct 
value. Henceforth we shall assume therefore tha t  the 
value of the left hand side of (7.3) is known as a 
function of q~, q~, qs and shall denote it by D(q~, q2, q3)" 

D(q~, q~, qs) = (IEk~Ek~Ek31 cos (q~kt+ ~k~ + q~ka))lk~I=q~, 
(7.5) 

where, naturally,  k~ + k~ + ks = O. 
We return now to equation (6"8) which we write 

in the form 

[EIE~E~] cos ( ~  + ~2+ ~ )  

K(a(h~, h~, hs)-S(q~, q~, qs) )+r(hl ,  he, ha), 

where (7.6) 

a~ - 3 a ~  + 2~s (7"7) 
K - ~/e(((lEklU - 1)3)k L-C(0 , 0)) 

is an absolute constant, 

S(q~, q~, qs)= C(h~, - h a )  , (7"8) 

in view of (6.3), is a function only of q,, q.,, q~, 
r(h~, he, ha) is given by (7.1), and a(h~, he, ha) is 
defined by means of 

a(h~, h% ha) 

- ((IEkl u-1)(IEh~+k] ~'-l)(IE-ha+kl 2 -  1))k, (7"9) 

so tha t  a(h~, h% ha) is a known function of the vectors 
h~, h~, ha. There remains only the problem of deter- 
mining K and S(q~, q~, qs). 

We rewrite (7-6) in the form 

IE~E~.Esl cos (~1 + q~ ÷ ~ a ) -  r(h~, h~, ha) 

K 

a(h~, he, h~)-S(q~, q~, qs) , (7.10) 

and average over all orientations in reciprocal space 
of the triangle with sides hi, he, ha. Writing 

(a(kl ,  ks, kz))lkil=~i = A(ql, q2, q~), (7.11) 

where qi = [h~[ = [k~[, i =  1, 2, 3, so that ,  in view of (7.9), 
A (q,, q2, qs) may be assumed to be known as a function 
of ql, qe, qs, we find, using (7-5) and (7.4), 

S(ql, qe, qs) ~ A(ql, q2, qs) 
D(ql, q2, q3)-R(ql ,  q~, qs) 

K 

Hence (7.10) may be writ ten 

(7.12) 

[E1EeE3[ cos (~1 + ~e + ~s) 
g(a(h~, h2, h3)-A(q, ,  q2, q3)) 

+ D(ql, qg, qs)+r(hl ,  he, hs ) -R(q l ,  qe, qs) • (7.13) 

In order to obtain the constant K from (7-13) it  
would be sufficient to substitute any values for 
hi, he, ha satisfying (5.2) except for the fact that ,  
in general, the corresponding value of ~1+ ~e+ ~3 is 
not known. However, for all space groups other than  
P1, it is always possible to choose hi, h2, h3 in such 
a way that ,  as a consequence of the space group 
symmetries, ~1 + ~2 + ~8 is 0 or ~. With such a choice 
for hi, he, ha, the value of cos (~1 + ~e + ~s) appearing 
in (7.13) is ± 1. The ambiguity may be resolved by  
observing firstly that ,  in view of (7-1), (7.4) and (7.5), 
the last three terms of (7.13) are relatively small, 
and secondly, from (7.7) and (6-4), tha t  K must  be 
positive. Hence cos (qg, + ~2 + ~ )  = + 1 or - 1 accord- 
ing as the coefficient of K in (7.13) is positive or 
negative. Naturally,  in practice, h~, he, and ha are 
further restricted by the requircment that  [E,,,E,,2E,,3[ 
be relatively large. In order to improve the accuracy 
with which K is determined, it is desirable also to 
employ several triples hi, he, ha subject to the con- 
ditions already described. Once K has been deter- 
mined, then S(ql, qe, qs) is found from (7.12). 

The chief result of this paper is contained in equation 
(7-6), where K is obtained from (7-13) in the manner 
described, a(hl, he, ha), A(ql, qe, qa), r(hl, he, ha), 
R(ql, qe, qs) are given by (7.9), (7-11), (7.1), (7.4) 
respectively, D(ql, qe, qs), defined by (7.5), is found 
from the right-hand side of (7.3) (employing natural ly  
all the known interatomic triangles, as well as Table 1), 
and S(ql, qe, qs) is then obtained from (7.12). 

8. Concluding r e m a r k s  

In this paper the problem of determining the phases 
of the structure factors directly from their magnitudes 
has been formulated with great generality. The 
resulting formalism is sufficient to cope, not only 
with the annoying obstacle arising from the presence 
of rational dependence among the atomic coordinates, 
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but  also with the  problem of uti l izing whatever  
previous information concerning molecular s t ructure  
may  be available.  The t r ea tmen t  is admi t t ed ly  an 
approximate  one, so t ha t  two directions for fur ther  
research are suggested: (1) to es t imate  accurate ly  the 
magni tudes  of the errors involved (presumably of the 
order of 1~I/N) and (2) to improve the accuracy of 
the formulas here derived. 

Our formulat ion leads to two procedures, the second 
of which appears superior, for the actual  de terminat ion  
of the phases. In  order to facil i tate the implementa t ion  
of these methods,  a short  table of the impor tan t  
funct ion B(z, t) has been included. 

A P P E N D I X  I 

Proof of Theorem 3.1" 
N 

(lEaf ~ -  x)(IEh+~l ~ -  1) = (1/~)  Z z~zr~ ,  
j , k  

] ' , k '  
1 

× exp (2~rik. r~,~,) exp [2~ri(h + k).  r~e] 

= (~/~) ~ Z~Zr,~, 
j 'C-k 

1 

× e x p  (2~ih.r~e) exp [2~ik .  (r~e+r~,e,)] . (I.1) 

Averaging (I.1) over all vectors k we find t ha t  all 
te rms on the r ight  vanish except those for which 
r~e+r~,e ,=0.  For each fixed pair  (j, k) summat ion  
of Z~,e, over all j '  # k' such tha t  r~e+ r~,e, = 0 yields 
w~e=Z~ee~, and (3.16) follows immediate ly .  

A P P E N D I X  II 

Proof of Thcorenl 3"3" From Theorem 3.1, 

<(IEkI 2 -  1)(IEh~ kl 2 -  ])>k 
.V 

~v Zj~ e ik [ .2-: Z~kejk cxp (29zih. rje)] 

J 

1 

The expression in braces is a weighted average of 
exp (2~ih . r j~) .  Uowever,  (3.3), wi th  k replaced by  h, 
yields the following formula for the average (with 
different weights) of exp (2~ih.r l~)"  

N 

,Z Z~e exp (2~ih. r~e) 

ae(IEhl2-- 1) 
= , (11.2) 

~v 0.2 _ (7 2 
2-' Z¢~ 

]:~ k 
1 

in which we have also used (3.7) to replace 

2V 

2-'Zj~ by  a ~ -  a2. 
] , k  

1 

Ident i fying these two averages of exp (2~ih. r j~) ,  
we subst i tu te  from (II.2) into the last  factor (in 
braces) of (II.1) and, employing also Theorem 3.2, 
obtain the approximate  formula (3.20). 

A P P E N D I X  l I I  

Proof of Theorem 5.2: 

(IEkl 2 -  1) (IEhl+kl 2 -  1) (IE_h~+kl '2- 1) 
IV 

= (1/a~) Z Zj~Zj,~,Z~,,~,, exp (2~ik.r j~)  

j'*k" 
f',k'" 

1 

× exp [2hi( hi + k).  rj,1~,] exp [2hi( - ha + k).  rj,,e,,] 

(III.1) 
N 

- -  Z r, -- (1/a~) 2-" j~Z~'k'Z~"~" exp [ 2 ~ i ( h l . r ~ - -  ha.r~,ic,)] 
/ , k  

j'::b k" 
j ' "  * k'" 

1 

x exp [2z ik .  (rjk + rj,ic, + rj,,k,,)] • (111.2) 

Next  we average (111.2) over all vectors k and observe 
tha t  all contr ibutors  to the average of the r ight -hand 
side vanish except those for which rjk + rj,~, + rj,,~,, = 0. 
Since the s t ructure  is determinate ,  it  has no chance 
interact ions so t ha t  the only non-zero contr ibutors  
are those corresponding to the val id interact ions or 
the induced interactions.  There remains  only the  
problem of summing those contr ibut ions to the 
average which correspond to such interact ions,  with  
the aim of reducing the sextuple sum (III.2) to a 
tr iple sum over the val id interact ions or, more 
precisely, to the tr iple sum shown in (5.5). 

We first  f ind those contr ibutors  to the average 
corresponding to the valid interactions.  Two cases 
arise. For  each fixed pair  (j, k ) =  (#, v) the in teract ion 
(rtk, rj,~,, rl,,~,,) assumes ei ther the form (rt,~, r~q, re~) 
or the form (r,~, re~, r~Q). Hence the contr ibutors  to 
the average corresponding to the val id interact ions 
may  be wri t ten  

N N 

(1/a~) 2 Zv,,Z ZvqZ~,~{exp [2~ i (h l .  rvv -  ha. rvq)] 
/ z~v  0 = 1  

i o # g  
o~:v 

+ exp [ - 2=i (hi .  r ~ , -  h3. rm)] } 
N 

= (2/~)  • Z~,, o cos 2 z e ( h l . r ~ -  h3.r~o ) . 
# # v # O  

1 

(111.3) 
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Next, corresponding to each fixed valid interaction 
(r~. r~.o, r~.) are those contributors to the average 
associated with all the induced interactions 
( rm rye., r~..~,.), including the interaction ( r . .  r~o, r~.) 
itself, which are equivalent to (r.~, r~, ra,): 

(1/a~) ~ Z~z ZI,~, Z¢,,~,, exp [2~i ( h~. r ~  - ha. r~,~,)] 

i,,,~,, (III-4) 

where the summation is extended over all j ,  k, j ' ,  k', 
j " ,  k"  such tha t  the three vectors r m  r~,z,, r~,,~,, are 
equal, in some order, to the three vectors r~,~, r~e, re~, 
or to their negatives. 

Consider first  those terms of (III.4) such that  
r ~  = r~,~, r~,~, = r~0, r~-,,~,, = r~,~,. Then 

exp [2~i (h~. r~z-  ha. r / # ) ]  

is constant with respect to the summation of (III.4) 
and is equal to exp [2~i(h~.r~,~-ha. r~q)]. These terms 
of (III.4) then reduce to 

3 (1/a~.) Z~,~%~Z~qe~o Ze~,%~, exp [2~i (h~. r~,~- ha. r~q)] . 

(111.5/ 

Consider next  those terms of (111.4) such that  
r ~  = r,~, r¢,~, = re,, r~,,~,, = r~q. Again 

exp [2~i (h~. rlz-- ha. ri,~,)] 

is constant with respect to the summation of (III.4) 
and is now equal to e x p [ - 2 u i ( h l . r : + , - h 3 . r + + ) ] .  
Hence these terms of (III.4) reduce to 

3 (1/ao.) Z~,~ e~,~ Z~o, ~,,, Zo+, ~o~ exp [ - 2 ~ i (h ~. r ~  - ha. r~,~,) ] . 

(111.6) 

The remaining ten cases obtained by setting r ~  = r~0, 
r~,~,=r~,v, r~,,~,,=ro,; r~=r~e,  r~,~,=re,, r~, ,~, .=r~; 
etc., all reduce to terms like (111.5) or (111.6). We 
arrange these terms so as to combine exponentials 
to form cosines and obtain 

3 ~. [2~(h~.r~,~ h3.r~a)] (111-7) (2/~.)Z~%~e~%~ S cos - , 
/2, v, O 

where the symbol S means the sum over the six 
/2, v, 0 

permutat ions of/x, v, Q. 
For each fixed triple #, v, ~, (111.7) would give the 

exact contribution to (111.4) corresponding to the 
induced interactions equivalent to (r.~, r~q, re. ) except 
for the fact that each such interaction is counted in 
(III-7) as often as there are valid interactions equiva- 
lent to (r~, r:e, re,), i.e. U,:.o times. Since we shall 
want to sum over all the valid interactions, more 
precisely over all/~#vd:~, we must divide (III-7) by 
U,:~ so that we finally obtain (5.5). 

A P P E N D I X  IV 

Proof of Theorem 5.5: We employ Theorem 5-2 to get 

N 

.~, Z~voElev o 
1~4:v#o 

((IEk] 2 -  1)(IEh~+kl 2 -  1)(IE_h,+kl ~ -  1) )k= 

N 

Z~vos~vo  COS 
~ # v # . o  

x (IV.l) X .x 

~" Z~,~oe.,, o 
,u .-T- v # O 

1 

The weighted average of cos [2~(hl.r~,~-ha.r~o) ] in 
braces is approximately equal to the average (with 
different weights) given by Theorem 5.1" 

2V 

Zi,,o cos [2~(hl .  rt,~- ha. r~,,)] 
it4-v4:O 

1 
. . . . . .  

N 

1 

~v " I E1E~Eal cos (~1 + ~e + ~3) 

1 

:v (IE~I2+IE2I'~+IEal2--2) " 

.~  Z m 
1~4=v#o 

1 

(1v.2) 

Substi tut ing back into equation (IV.l) and em- 
ploying also Theorems 5.3 and 5.4, we find 

<([Ek[ 2 -- 1) (IEhl+kl 2 -- 1) (I E-h3+kl 2 -- 1)>k 

l a~ 12 IEIE2Es] cos ( ~  + q92 + ~8) 
- aa(IEll 2 + IE2] 2 + IEsI 2 -  2) 

<(IEkl2-1)3>k I a ~ - a a l a 2 +  2aa 

% 

(lV.3) 

Solving (IV'3) for ]E1E2E31 cos (~1+~2+~3)  yields 
(5.12). 

The programming and computation of the function 
B(z, t), which was performed on the NAREC,  the 
Naval Research Laboratory automatic  computer, 
were carried out by Mr Herbert  Bixhorn. Some 
constructive criticism concerned with the computation 
of this function was offered by Dr. Benjamin Lepson 
and Mr Richard McGill of the Applied Mathematics 
Staff, Naval Research Laboratory. Their help and 
cooperation are gratefully acknowledged. 
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The Structure and Mechanism of Formation of Pyrolytic Carbon from Cyanogen 
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The structures of carbon deposits formed by pyrolysis of cyanogen on a carbon filament have been 
investigated by electron diffraction and the influence of cyanogen pressure and filament temper- 
ature has been determined. All the deposits show the existence of graphite layer planes and both 
the crystal size and the degree of preferred orientation parallel to the axis of the substrate increase 
with temperature of deposition. :Possible mechanisms are discussed for the formation of carbon 
from cyanogen, methods of growth of deposits both along and normal to the graphite c axis being 
proposed. 

Carbons produced by the decomposition of organic 
vapours on heated substrates, part icularly carbon 
filaments, have been extensively studied (Grisdale, 
Pfister & van Roosbroeck, 1951 ; Tesner & Echeistova, 
1952; Brown, Hal l  & Watt ,  1953; Brown & Watt ,  
1958; Cullis, Manton, Thomas & Wilman, 1959; 
Blackman, Saunders & Ubbelohde, 1961). One factor 
which is of pr imary importance in determining the 
structure of the deposited carbon is the physical 
condition obtaining at the point of deposition, the 
carbons produced on a solid surface differing fun- 
damental ly from those formed in the gas phase. 
In  the first case, the carbon is laid down in small 
crystallites which have a high degree of orientation 
and is easily graphitized at 2500 °C or above. Gas 
phase carbon is, however, a carbon black in which 
the individual particles are spherical, and does not 
graphitize well even at 3000 °C. 

The physical properties of pyrolytic carbons depend 
too to a considerable extent on the temperature of 
deposition. A striking change has been found to occur 
as this temperature passes through a critical region 

around 1900 °C (Blackman, Saunders & Ubbelohde, 
1961). Carbons prepared from methane below this 
temperature have low bulk densities, show only 
a comparatively small degree of preferred orientation 
and contain appreciable amounts of residual hydrogen. 
Deposition at higher temperatures results in carbons 
with bulk densities and other properties which tend 
towards those of perfect graphite. It  seems probable 
that,  at about 1900 °C, the rates of thermal annealing 
processes become of the same order as the rates of 
deposition of carbon, thus causing defect structures 
to be removed as rapidly as fresh deposits are laid 
down. 

The influence of the starting material  from which 
carbons are formed is, however, much less clear. 
Comparison of the carbonaceous deposits produced by 
pyrolysis of some hydrocarbons and chlorohydro- 
carbons shows that  the more highly chlorinated 
compounds give rise to carbons in which the crystallites 
are smaller and the preferred orientation is less 
marked than in those derived from compounds con- 
taining little or no chlorine (Cullis, Manton, Thomas 


